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Abstract. In spite of its many successes, the standard model makes many empirical assumptions in the Higgs
and fermion sectors for which a deeper theoretical basis is sought. Starting from the usual gauge symmetry,
u(1)× su(2)× su(3) plus the three assumptions of (A) scalar fields as vielbeins in internal symmetry space,
(B) the “confinement picture” of symmetry breaking, (C) generations as “dual” to colour, we are led to
a scheme that offers (I) geometrical significance to scalar fields, (II) a theoretical criterion for what scalar
fields are to be introduced, (III) a partial explanation of why su(2) appears broken while su(3) confines,
(IV) baryon–lepton number (B−L) conservation, (V) the standard electroweak structure, (VI) a 3-valued
generation index for leptons and quarks, and (VII) a dynamical system with all the essential features of an
earlier phenomenological model, which gave a good description of the known mass and mixing patterns of
quarks and leptons including neutrino oscillations. There are other implications, the consistency of which
with experiment, however, has not yet been systematically explored. A possible outcome is a whole new
branch of particle spectroscopy from su(2) confinement, potentially as rich in details as that of hadrons from
colour confinement, which will be accessible to experiment at high energy.

PACS. 12.60.-i; 11.30.Hv

1 Introduction

Despite its great success, the standard model as it now
stands gives one the impression of being but the conse-
quence of a deeper theory yet to be divined. The many
input parameters on which it depends together with the in-
tricate structural details that have to be built into it are
a little beyond what one would expect of a truly funda-
mental theory. At a deeper level, one may wonder of course
why nature should opt for a gauge symmetry of u(1)×
su(2)× su(3) and not some other symmetry, or why there
should be a gauge structure in the first place. But even if
one takes this particular gauge structure for granted, one
finds that one has still to add quite a number of ingredi-
ents, mostly connected to the Higgs and fermion sectors,
which are seemingly extraneous to the gauge hypothesis.
For example, to break the electroweak su(2) symmetry so
as to fit the picture obtained from experiment, one intro-
duces in the standard model an su(2) doublet of scalar
fields, whose significance in the original gauge framework
is a little obscure, which is a pity, for the bosonic sec-
tor of the framework is otherwise so geometrical. Further-
more, we have not been able to explain why of the two
non-abelian symmetries, the electroweak symmetry su(2)
should be broken, while the colour symmetry su(3) is not.
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In the fermion sector also, nature tells us that we have to
introduce three generations for each of the four fermion
species: U -type quark, D-type quark, charged leptons and
neutrinos, and that we have to take left-handed fermions
as su(2) doublets and right-handed fermions singlets, with-
out us being able to fathom why she would want us to do
so. Indeed, it is this our inability to answer the above ques-
tions in the Higgs and fermion sectors that forces on us
the bulk of the twenty-odd independent parameters that
have to be fed into the standard model. Furthermore, at
the secondary, detail level, there are the no less intriguing
questions of why the observed fermion masses should be
hierarchical, with values differing from generation to gen-
eration by orders of magnitude, and why the mixing angles
between up and down fermion states be so different from
case to case, ranging from order 10−3 for Vub, say, to order
unity for the oscillation of atmospheric and solar neutrino,
which questions are also left unanswered in the present
standard model. Any understanding of them will thus not
only be aesthetically satisfying but also of practical value,
however incomplete the understanding we may be able to
achieve at the present stage.
To attempt to answer these questions, one can try

extending the theory by enlarging the symmetry as in
grand unified and supersymmetric theories, or by increas-
ing the number of space-time dimensions as in Kaluza–
Klein type theories, and/or the dimensions of the funda-
mental object as well, as in strings and branes. The ten-
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dency of such attempts, however, is to increase the num-
ber of unknown parameters rather than to reduce it. An
alternative is to forego for the moment the very ambi-
tious vision of the above attempts, attractive though it
may be, opting instead for economy, and try to answer the
questions posed all within the framework of the standard
model.
It is in this latter spirit that we have attempted here

to construct, based on some simple and hopefully reason-
able assumptions, a new “protogenic” model, which will
give the standard model as the result. The attempt builds
on three ideas which have been suggested earlier in slightly
different contexts. The first (A) is the proposal that frame
vectors in the gauge symmetry space be promoted to fields
so as eventually to play the role of Higgs fields, thus giving
the latter a geometrical significance that they at present
lack [1, 5]. The second (B) is an old idea of ’t Hooft [2]
and of Banks and Rabinovici [3], re-emphasised more re-
cently by ’t Hooft [6], that symmetry breaking in certain
circumstances may be re-interpreted as the consequence of
a confining theory. The third (C) is the suggestion that the
generation symmetry is in some sense dual to the colour
su(3) symmetry [4, 5], so that one obtains automatically
three and only three generations of fermions. These three
ideas, as we hope to show, can bring us quite close to con-
structing a protogenic model behind the standardmodel as
desired. Besides, they can each lead to quite revolutionary
changes in our general concepts, which we wish first now to
outline.
(A) The idea that scalar fields appearing in gauge the-

ories may have the geometrical significance of frame vec-
tors in internal symmetry space is analogous to the fa-
miliar concept of vierbeins being introduced as dynamical
variables in gravitation theory. It means that these scalar
fields, having a specific geometrical function to discharge,
are to be regarded as an integral part of the gauge struc-
ture, and not to be introduced or discarded at will to fit our
interpretation of the data or some other prejudice. Their
existence and properties are to be determined by the gauge
symmetries in the theory leaving us little room for choice.
Whether they can function as Higgs fields to break the ap-
propriate symmetries and give a realistic model of nature
has yet to be seen, but if they do, then the Higgs mechan-
ism as normally conceived, say in electroweak theory, will
cease to be an input assumption and become just a conse-
quence of an all-enveloping gauge concept.
(B) It was shown by ’t Hooft and Banks and Rabi-

novici already in the late seventies that the electroweak
theory, which is usually conceived as a theory with a spon-
taneously broken su(2) gauge symmetry, can equivalently
be considered as a theory in which the su(2) gauge sym-
metry confines; what is actually broken is a global su(2)
symmetry that is associated with but is not the same as the
original local gauge symmetry. If we accept the latter in-
terpretation, then the difference between su(2) and su(3) in
the standard model is not any more a matter of status, i.e.
whether spontaneously broken or confining, but just a mat-
ter of degree, i.e. how deeply the symmetry is confined so as
to be accessible or not to probing by present experiments.
If that is the case, then it is a matter to be understood in

terms of the dynamics and it is not to be regarded as part
of the empirical input.
(C) The idea that fermion generations may in some

sense be dual to colour introduces automatically into the
theory exactly three generations of fermions, the existence
of which therefore need no longer to be assumed. Be-
sides, the supposition brings with it its own dynamical
logic so that the parameters that characterise the three
fermion generations can now appear as dynamical conse-
quences and again be removed from the standard model
as inputs from experiment, thus drastically reducing the
number of empirical parameters. Indeed, previously, with
a phenomenological model we called the dualised standard
model (DSM), built roughly along these lines, we were al-
ready able to reproduce correctly most of the fermion mass
ratios and mixing parameters [4, 7].
One sees therefore that these ideas can in principle go

a long way towards our goal of reducing the degree of
arbitrariness in the formulation and serve as a basis for
the construction of a protogenic version to the standard
model. However, whether they will be able, on being put
to practice, to produce a model approximating nature is
a question that can be answered only by carrying out the
program explicitly. The following is an outline of the logic
followed and conclusions obtained in our attempt, which
are to be detailed in the succeeding sections.
The idea (A) as developed in [1] specifies to a large

extent what scalar fields corresponding to frame vec-
tors (called framons henceforth) are to be introduced for
a given gauge symmetry. When supplemented by an appeal
to economy, it leads for the gauge symmetry u(1)× su(2)×
su(3) to two sets of framons: a “weak” framon transforming
as a doublet of su(2) and three “strong” framons trans-
forming as triplets of su(3). As frame vectors, they give the
orientation of the local frames with respect to some global
reference frames, and hence carry with them indices refer-
ring to the global frames as well. Since physics should not
depend on the choice of reference frames, it follows that
one has invariance not only under the original local gauge
symmetries but also under the global symmetries ũ(1)×
s̃u(2)× s̃u(3). This doubled invariance puts a stringent con-
dition on the framon action, in particular on the framon
self-interaction potential, which, up to fourth order for
renormalisability, is found to have a unique form depend-
ing on seven real parameters. The part of the potential
depending only on the “weak” framon is identical in form
to the standard electroweak potential, that only on the
“strong” framons is similar in form to the scalar potential
in DSM, but there are additional terms linking the “weak”
and “strong” sectors. The vacuum for this potential is de-
generate and depends, by virtue of the linkage terms, on
the orientation of the “weak” framon in s̃u(3) space.
Next, in the confinement picture of [2, 3] adopted

in (B), all the local symmetries u(1)× su(2)× su(3) remain
exact, and both non-abelian symmetries confine, with the
confinement by su(2) much deeper than that by (colour)
su(3). What are broken are the global symmetries s̃u(2)
and s̃u(3), the first by the u(1) gauge interaction, the sec-
ond by the framon potential above via the linkage to the
“weak” sector. Under the present experimental regime in
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which one already probes routinely into hadronic struc-
tures (call this the standard model scenario), one needs
consider only su(2) as confining. In that case, only su(2)
singlets are observable and still appear as elementary. In
particular, as in the electroweak theory treated in [2, 3],
the Higgs boson appears as the s-wave bound state by
su(2) confinement of the “weak” framonwith its conjugate,
while the vector bosons W±, Z and γ appear as p-wave
bound states, and one recovers the standard electroweak
theory as the result.
Introducing next as fundamental fermion fields the

simplest representations, say ψ(1, 1), ψ(1, 3), ψ(2, 1) and
ψ(2, 3), where the first number denotes the su(2) and the
second one the su(3) representation, one can form bound
states from the last two with the “weak” framon by su(2)
confinement, which, as in the electroweak theory treated
in [1–3], represent respectively the left-handed leptons and
quarks. There is one difference, however, namely that here
the “weak” framon carries indices referring to the global
symmetries ũ(1), s̃u(2), and s̃u(3), and these are now trans-
mitted to the fermion bound states, i.e the left-handed
leptons and quarks. The conserved ũ(1) charge is found to
be the baryon–lepton number, the s̃u(2) symmetry broken
by u(1) is identified already in [1–3] as up–down flavour,
while s̃u(3), broken in a rather special manner to be out-
lined below, is to play the role of generations, as proposed
in (C).
The Yukawa coupling constructed to have the required

invariance gives for the tree-level mass matrix for both lep-
tons and quarks a factorised form:

m=mTαα
† , (1)

where mT depends on the fermion species, but α, a vec-
tor in s̃u(3) space coming from the “weak” framons, does
not. The vector α, however, is coupled to the “strong” fra-
mons via the linkage terms in the framon potential. An
examination of the dynamics in the strong sector to first
perturbative order along the lines already performed in [8]
for DSM shows that α will rotate in generation space as
the scale µ changes, of which rotation there is a fixed point
at µ = 0 and another at µ=∞, and α rotates away from
the first fixed point towards the second as µ increases. Now
these properties of the fermion mass matrix are exactly
those that were found in earlier analyses [7] to be essential
and very likely sufficient to give a reasonable description of
the fermion mass and mixing patterns observed in experi-
ment. It seems thus hopeful that a similar agreement with
experiment as for DSM can be achieved here, although this
can only be confirmed by an explicit calculation, which is
now being pursued.
In view of these results, we venture to conclude that one

does seem to have gone some way towards what we called
a protogenic model behind the standard model. There are
several unanswered questions, and distinguishing predic-
tions to be tested, which we reserve for the concluding
section, including in particular a whole possible new field
of particle spectroscopy to be opened up, perhaps at LHC,
but if not, then when high enough experimental energies
become available.

2 The fundamental boson fields

We start with a theory with gauge symmetry u(1)×
su(2)× su(3). Here and throughout this paper, we denote
a gauge symmetry by its gauge (Lie) algebra whenever
there is no necessity to specify which among the locally iso-
morphic Lie groups is to be selected as the gauge group,
so as to avoid questions of topology inessential for the
problem at hand. By convention, lower case letters denote
algebras and upper case letters groups.
We introduce first as usual for the three factors re-

spectively the gauge fields Aµ(x), Bµ(x) and Cµ(x) with
the well-known geometric significance of connections in the
corresponding principal bundles.
In addition, following suggestion (A) in the introduc-

tion, we shall introduce as part of the gauge structure
Lorentz scalar fields having the geometric significance of
frame vectors in internal symmetry space, which we call
here framons. The concept that frame vectors or vielbeins
can be introduced as dynamical variables is familiar al-
ready in gravity theory. It thus requires no great stretch
of imagination to consider having them as dynamical vari-
ables in gauge theories as well. Indeed, if gauge structures
were to be obtained by compactification of higher dimen-
sions as they are in certain string and Kaluza–Klein type
theories, then it would seem natural, perhaps even neces-
sary, to introduce, along with the vierbeins of gravity, such
framons for gauge theories also.
Let us first make clear what we mean by frame vec-

tors and framons in each of the three simple factors of the
symmetry u(1)× su(2)× su(3) of present interest, repeat-
ing briefly here some considerations in [1] for completeness.
For the su(N) symmetries, frame vectors can be taken as
the column vectors φã of the matrix

Φ=
(

φãa
)

, (2)

which specifies the orientation of the local (x-dependent)
su(N) frame with respect to some global (x-independent)
reference frame, where a = 1, 2, . . . , N , which labels the
rows referring to the local frame and ã= 1, 2, . . . , N , which
labels the columns referring to the global reference frame.
By definition then, Φ transforms by a fundamental repre-
sentation of the local su(N) operating from the left, but by
an antifundamental representation of a global s̃u(N) oper-
ating from the right, where the latter represents the effect
on Φ by a change in the global reference frame.
As a transformation matrix between two su(N) frames

(i.e. the local and the global),Φwould satisfy, of course, the
unitary constraints

Φ†Φ= 1 , det(Φ) = 1 , (3)

which means, in particular, that the frame vectors φã

would each be of unit length. As framon fields, however,
we would want the components of φã, in analogy to the
vierbeins of gravity, to have the freedom to vary over all
(in this case, complex) values, so that (3) can no longer be
fully satisfied. We could, of course, allow the components
of Φ to vary independently over all complex values and



638 H.-M. Chan, S.T. Tsou: A model behind the standard model

ignore the constraint (3) altogether, thus introducing all
the N2 complex or 2N2 real components of Φ as indepen-
dent field variables. But this would seem extravagant, since
these components need not all be independent. In order to
minimise, for the sake of economy, the total number of in-
dependent fields to be introduced, we propose instead that
we retain as much of (3) as is consistent with the desired
freedom and with the natural condition that all framons
have the same physical dimension.
For su(2), we see that we can retain from (3) the

condition

φ2̃r =−εrs
(

φ1̃s
)∗
, (4)

namely φ1̃ and φ2̃ being orthogonal and having the same
length, but we still allow all their components the freedom
to range over all complex values. Besides, the relation being

linear and homogeneous in φ1̃ andφ2̃ guarantees that they
can remain of the same physical dimension. This means
that for su(2) theory, we can eliminate via (4) one of the
two framon fields in terms of the other and be left with only

one independent su(2) doublet, say φ= φ1̃, i.e. two com-
plex or four real components as independent field variables,
halving the number of the original components in Φ. The
same tactic, however, would not work for su(3), nor indeed
for any su(N) with N > 2. We could of course also reduce
the number of independent framons in su(3) by insisting

that the vector φ3̃, say, be always orthogonal to φ1̃ and φ2̃

by retaining from (3) the condition

φ3̃r = εrst
(

φ1̃s
)∗(
φ2̃t
)∗
, (5)

but this relation is inhomogeneous, implying for φ3̃ a dif-

ferent physical dimension from that of φ1̃ and φ2̃, a con-
clusion we cannot physically accept. The best that we can
do, it seems, is just to retain from (3) the condition that the
determinant be real. When cast in the form

det(Φ) = (det(Φ))∗ , (6)

the condition is homogeneous, thus not suffering from the
objection against (5) above, and multilinear, thus allow-
ing the independent variables to attain all values as de-
manded. This removes only one real component from the
original 18 in Φ but seems already the best economy that
can be achieved in su(3). As will be seen, this difference be-
tween su(2) and su(3), due just to their different structures,
will play a significant role in this scheme in reproducing
the very different physics arising from the two non-abelian
symmetries in the standard model.
Next, let us repeat the above considerations for the re-

maining u(1) factor. Here orientation means just a phase,
and relative orientation just a phase difference. Hence, the
analogue of Φ above for the su(N) factors is here just
a phase factor of the form

Φ= exp ig1(α− α̃) , (7)

with α x-dependent, transforming under the local u(1),
but α̃ x-independent, transforming under the global ũ(1)

transformations. The framon field is then just a complex
scalar field with its phase as in (7) above.
Notice that the framon fields so introduced, simply by

virtue of their assigned geometric significance as frame
vectors, have a special property not shared by the gauge
fields Aµ, Bµ and Cµ introduced before, nor by the fermion
fields yet to be introduced. Namely, apart from trans-
forming under the local (gauge) transformation as other
fields do, they carry in addition a global index (ã for the
non-abelian symmetries and α̃ for u(1)), which transforms
under global changes of the reference frame. Since physics
should not be affected by the choice of reference frames,
the action for framons should be invariant also under such
global changes. As will be seen, this helps to restrict the
form of the action and leads automatically to additional
conserved quantum numbers, which are assigned in the
present scheme to such otherwise unexplained quantities
as the baryon–lepton number and the (fermion) generation
index.
Having now specified what is meant by framons for each

of the simple factors in the symmetry u(1)× su(2)× su(3)
of actual interest, we turn now to the physical problem
itself. Let us first consider the electroweak sector charac-
terised by the local symmetry u(1)× su(2) and ask here
what framons should be introduced. We start again with
a matrix giving the orientation of the local frame with
respect to some global reference frame but now for the
symmetry u(1)× su(2). The columns of this matrix are
what we call the frame vectors, which, as for the previ-
ous cases, are to be representations of the local symmetry
u(1)× su(2). Now, from the representations of the simple
factor symmetries u(1) and su(2), there are two ways to
build a representation of u(1)× su(2), i.e. taking either the
sum or the product. Supposing we appeal again to econ-
omy and opt for the choice requiring the smallest number
of independent framon fields, we would choose the product,
since 1×2< 1+2. In other words, the frame vectors would
again be su(2) doublets, but now each carrying a u(1)
charge. Furthermore, by virtue of (4), we would eliminate

one of these, leaving just one charged doublet, say φ= φ1̃,
as the only framon field.
We have yet to specify what u(1) charge this field φ

should carry. This depends not just on the gauge alge-
bra, which is u(1)× su(2), but on the choice of the gauge
group. Now there are three locally isomorphic groups with
this same algebra, namely U(1)×SU(2), U(2) = (U(1)×
SU(2))/Z2, and U(1)×SO(3), of which three we can dis-
card immediately the last one, since it does not contain
the su(2) doublet as a representation. Of the remaining
2, the first, U(1)×SU(2), double-covers the second U(2).
Suppose we appeal again to minimality and choose the
smaller group U(2), we end up with a half-integral charge,
say ±g1/2, for the single doublet framon field φ. We no-
tice that this is identical in properties to the Higgs field in
standard electroweak theory. Indeed, starting with the fra-
mon concept, insisting on global ũ(1)× s̃u(2) invariance in
addition to the usual local gauge u(1)× su(2) invariance in
constructing the action, and then following the above pre-
scription based on minimality, one would be led uniquely
to the standard electroweak theory as the result. A demon-
stration of this is given in [1] and again later in the full
standard model context.
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Having now applied the framon idea to the electroweak
sector, let us push further and apply the same ideas to
the full symmetry u(1)× su(2)× su(3). We focus first on
a single framon vector. This should by itself be a repre-
sentation of the local symmetry u(1)× su(2)× su(3), to be
constructed out of the fundamental representations of the
component symmetries, namely a phase for u(1), a dou-
blet for su(2), and a triplet for su(3). For the product be-
tween each pair, one can take either the sum or the product
representation. In the electroweak theory where the pair
u(1)× su(2) occurred, one took the product, this being the
smaller of the two (1×2< 1+2),minimising thus the num-
ber of scalar fields to be introduced. The same reasoning
should apply to the product u(1)× su(2) here, and also to
u(1)× su(3). For the pair su(2)× su(3), however, the sum
representation is smaller than the product (2×3> 2+3).
Hence, following the same line of reasoning, to economise
on the number of scalar fields, one would opt for the rep-
resentation 1⊗ (2⊕3). Practically, this means that each
framon vector here is broken into two parts: a “weak” fra-
mon, φr, r = 1, 2, being a doublet of su(2), and a “strong”
framon, φa, a= 1, 2, 3, being a triplet of su(3), with each
being also a representation of u(1), i.e. carrying a u(1)
charge.
What u(1) charges should these framons carry? By the

symmetry u(1)× su(2)× su(3), we mean usually the alge-
bra which, for constructing the action, for example, is all
that matters. To identify what charges are permissible,
however, we need to specify the gauge group [9]. Again,
a version of this question in the electroweak theory was
answered above correctly by invoking minimality. Sup-
pose one takes the same attitude for the symmetry u(1)×
su(2)× su(3); one would then adopt as gauge group the
group, denoted U(1, 2, 3), say, which is obtained by iden-
tifying in the group U(1)×SU(2)×SU(3) the following
sextet of elements:

(y, f, c) = (z4y, f, ωc) = (z2y, f, ω2c) = (z3y,−f, c)

= (zy,−f, ωc) = (z5y,−f, ω2c) , (8)

where y, f and c, are elements in respectively the groups
U(1), SU(2), and SU(3),

z = expπi/3 , ω = exp 2πi/3. (9)

Note that (±1) and (1, ω, ω2) can respectively be identi-
fied with the elements of the centre of the groups SU(2)
and SU(3). Being 6-fold covered by the group U(1)×
SU(2)×SU(3), U(1, 2, 3) is the “smallest” group with al-
gebra u(1)× su(2)× su(3) that admits as representations
both the 2 of su(2) and the 3 of su(3). Then, with U(1, 2, 3)
specified as the gauge group, it follows that any field in the
theory, which has to be a representation of U(1, 2, 3), can
have only the u(1) charges g1q, with q depending on the
representations in su(2) and su(3) as follows [9]:

(1, 1) , q = 0+n ,

(2, 1) , q =
1

2
+n ,

(1, 3) , q =−
1

3
+n ,

(2, 3) , q =
1

6
+n , (10)

where the first number inside the brackets denotes the di-
mension of the representation in su(2) and the second num-
ber that in su(3), and n can be any integer, positive or
negative.
Restricting further the representations of the framons

in U(1, 2, 3) to those with minimal |q|, (i.e. equivalents in
U(1) of the fundamental or antifundamental representa-
tions) one obtains then for the “weak” framon q =± 12 and
for the “strong” framon q =− 13 . In consequence, they will
acquire also the ũ(1) charges g1q̃ with q̃ opposite in sign to
q, i.e. q̃ = ∓ 12 for the “weak” framons, and q̃ =

1
3 for the

“strong” framons.
We need more than one such framon – indeed as many

framons as there are frame vectors for the symmetry u(1)×
su(2)× su(3). We recall that, as for the simple symmetries
su(N) in (2) above, the “rows” of the present Φmatrix, i.e.
the (r, a) components (for fixed r, a) of the various frame
vectors labelled by (r̃, ã), and hence also of the framons, to-
gether should transform as a representation of the global
symmetry ũ(1)× s̃u(2)× s̃u(3). We thus have to ask again:
which representation? Minimality would suggest again 1̃⊗
(2̃⊕ 3̃), but if one chooses that, the theory would just break
up into two separate theories, i.e. the electroweak theory
plus chromodynamics disjoint from one another, which is
not an interesting nor a realistic situation. We propose
therefore to opt instead for the all product representa-
tion 1̃⊗ 2̃⊗ 3̃. Although this apparently departs from the
“principle of minimality”, which has so far been our guide-
line, it does not affect the number of scalar (x-dependent)
fields that have to be introduced, which is still minimal
since the symmetry under consideration is only global. In
any case, if the proposal of the product representation 1̃⊗
2̃⊗ 3̃ is accepted, we have finally for the full list of framon
fields the following. For the “weak” framons, we have

φr̃ãr = α
ãφr̃r , r, r̃ = 1, 2 , ã= 1, 2, 3 ,

q =±
1

2
, q̃ =∓

1

2
, (11)

and for the “strong” framons

φr̃ãa = α
r̃φãa , r̃ = 1, 2 , a, ã= 1, 2, 3 ,

q =−
1

3
, q̃ =

1

3
. (12)

The quantities αr̃ and αã are independent of x, but φr̃r
and φãa are x-dependent, representing altogether 4+9= 13
complex scalar fields or 26 real fields. Because of the uni-
tarity constraint (4) for φr̃r and because the determinant is
real for φãa, not all of these are actually independent, and
one ends up for the framons with just 21 real field degrees
of freedom.
The specific set-up (11) and (12) of framons is arrived

at by insisting, when faced with ambiguities, on “mini-
mality”, which, though appealing for economy, is by no
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means compelling since one cannot as yet give a phys-
ical reason why nature should opt for economy. Indeed,
we have to admit that in arriving at the above conclu-
sion along the lines described, we have been peeping at
the physical consequences also, and we have no doubt been
influenced by physical considerations. For example, in de-
ciding on which representation a framon should take in
the symmetry u(1)× su(2)× su(3), we have tried at first
the full product 1⊗2⊗3 but had to discard it for we
found a physically inadmissible amount of mixing between
the weak and strong sectors. Also, while opting for the
group U(1, 2, 3), we knew already from previous analy-
sis that it is the group that nature seems to prefer. So,
the above derivation through minimality is in a sense an
afterthought. Nevertheless, we find it interesting that by
appealing to minimality when faced with ambiguities left
open by the framon idea, one is led almost uniquely (i.e.
apart from the choice of representation for the global sym-
metry alreadymentioned) to the only solution which seems
to work, namely the one set out in (11) and (12), which we
shall henceforth adopt.
The framon fields in (11) and (12) are of a form unfa-

miliar at least to us, each having an x-independent factor
α that depends on symmetry indices. We find it convenient
to picture them as rather like the nucleon wave function
in nuclear physics when isospin is considered as an exact
global symmetry. To describe a nucleon in this case, we not
only have to give the wave function dependent on x and on
spin, but also we have to specify whether it is a proton or
a neutron by an isospin factor independent both of x and of
spin.
For future use, we choose to normalise the α, as we are

free to do, such that
∑

ã

|αã|2 = 1 ,
∑

r̃

|αr̃|2 = 1 . (13)

We shall find it convenient also to adopt on occasion a vec-
tor notation, grouping various components of the framons,
thus:

(φr̃)r = (φr)
r̃ = φr̃r , (φ

ã)a = (φa)
ã = φãa , (14)

where φ can denote a 2-dimensional vector in either su(2)
or s̃u(2) space, or a 3-dimensional vector in either su(3) or
s̃u(3) space. Any ambiguity that might arise in this nota-
tion can readily be resolved by noting how the vectors are
labelled and by the context.
For the weak framons φr̃ãr , one can economise on the

notation further by eliminating φ2̃ via (4) leaving only

αãφr = α
ã(φ1̃)r , (15)

where φr can be taken with a definite charge e.g. φ
(−)
r as we

shall sometimes do in future. However, to exhibit the s̃u(2)
invariance of the theory, it is often more convenient to keep
the more general notation with both r̃ = 1, 2 where neither
carries a definite u(1) charge, thus

φ(±)r = α
(±)

1̃
φ1̃r+α

(±)

2̃
φ2̃r =α

(±) ·φr , (16)

with

|α(+)|= |α(−)|= 1 , α(+) ·α(−) = 0 . (17)

With the specification of the framon fields in addition
to the gauge fields introduced at the beginning, our list of
the fundamental boson fields is now complete.

3 The invariant action

Next, we turn to the construction of an invariant action for
the bosonic fields enumerated above. Apart from Lorentz
invariance, we shall require of course that the action be
invariant under local transformations of the initial gauge
symmetries u(1)× su(2)× su(3). Furthermore, given that
the global symmetries ũ(1)× s̃u(2)× s̃u(3), which enter in
the framon fields, originate only as the choice of reference
frames of which physics should presumably be indepen-
dent, we ought to require also that our action be invariant
under these as well. We shall therefore construct an action
on this basis, which is fairly stringent, leaving rather little
freedom for its choice.
As usual we write our action for the bosonic sector as

a sum of three terms:

AB =AGF+AKE+

∫

V , (18)

with AGF representing the free action for the gauge fields,
andAKE and V respectively the kinetic energy and the po-
tential of the self-interaction for the scalar framons.
Explicitly, for AGF, we write as usual

AGF =−
1

4

∫

d4xFµνF
µν −

1

4

∫

d4xTr
(

GµνG
µν
)

−
1

4

∫

d4xTr
(

HµνH
µν
)

, (19)

with

Fµν = ∂νAµ−∂µAν ,

Gµν = ∂νBµ−∂µBν+ ig2[Bµ, Bν ] ,

Hµν = ∂νCµ−∂µCν + ig3[Cµ, Cν ] , (20)

for respectively the u(1), su(2) and su(3) components. This
action AGF is of course constructed to be invariant under
the local symmetries. It is invariant also under the global
symmetries ũ(1)× s̃u(2)× s̃u(3), trivially, since on these it
does not depend.
Next, for the kinetic energy termAKE wewrite as usual:

AKEW =

∫

∑

r,r̃,ã

[

(∂µ− ig1qAµ− ig2Bµ)rsφ
r̃ã
s

]∗
× [h.c.] ,

(21)

for the weak framons φr̃ãr , where q denotes the u(1) charge
operator, and

AKES =

∫

∑

a,r̃,ã

[(

∂µ+ i
g1

3
Aµ− ig3Cµ

)

ab

φr̃ãb

]∗

× [h.c.] ,

(22)
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for the strong framons φr̃ãa . These kinetic energy terms
are by construction invariant under both the local and the
global symmetries.
By virtue of the conditions (11), the weak framon term

reduces to

AKEW =

∫

∑

r̃

(

Dµφ
r̃
)†
(Dµφr̃) , (23)

with

Dµφ
r̃ = (∂µ− ig1qAµ− ig2Bµ)φ

r̃ , (24)

while by (12) the strong framon term reduces to

AKES =

∫

∑

ã

(

Dµφ
ã
)†
(Dµφã) , (25)

with

Dµφ
ã =

(

∂µ+ i
g1

3
Aµ− ig3Cµ

)

φã . (26)

Further, by virtue of the conditions (4) and (15), the ki-
netic energy term for weak framons reduces to just

AKEW = 2

∫

(Dµφ)
†(Dµφ) , (27)

which, if we choose φ = φ(−), is the same as in standard
electroweak theory, apart from an unimportant factor 2.
Lastly, to construct the general interaction potential for

framons with the required invariance under both the local
and global symmetries, we take a sum of all terms up to
fourth order (for renormalisability) in the framon fields,
contracting the indices in all possible ways. We obtain the
following:

V [Φ] = VW[Φ]+VS[Φ]+VWS[Φ] , (28)

where VW involves only the weak framons, VS only the
strong framons, and VWS both. Explicitly, for the weak sec-
tor, we have

VW[Φ] =−µ
′
W

∑

r,r̃,ã

φr̃ã∗r φ
r̃ã
r +λ

′
W

[

∑

r,r̃,ã

φr̃ã∗r φ
r̃ã
r

]2

+κ1W
∑

r,s,r̃,s̃,ã,b̃

φr̃ã∗r φ
r̃b̃
r φ
s̃b̃∗
s φ

s̃ã
s

+κ2W
∑

r,s,r̃,s̃,ã,b̃

φr̃ã∗r φ
s̃ã
r φ

s̃b̃∗
s φ

r̃b̃
s

+κ3W
∑

r,s,r̃,s̃,ã,b̃

φr̃ã∗r φ
r̃ã
s φ

s̃b̃∗
s φ

s̃b̃
r , (29)

and for the strong sector, we have

VS[Φ] =−µ
′
S

∑

a,r̃,ã

φr̃ã∗a φ
r̃ã
a +λ

′
S

[

∑

a,r̃,ã

φr̃ã∗a φ
r̃ã
a

]2

+κ1S
∑

a,b,r̃,s̃,ã,b̃

φr̃ã∗a φ
s̃ã
a φ

s̃b̃∗
b φ

r̃b̃
b

+κ2S
∑

a,b,r̃,s̃,ã,b̃

φr̃ã∗a φ
r̃b̃
a φ
s̃b̃∗
b φ

s̃ã
b

+κ3S
∑

a,b,r̃,s̃,ã,b̃

φr̃ã∗a φ
r̃ã
b φ

s̃b̃∗
b φ

s̃b̃
a , (30)

and, finally, for the interaction between the two, we have

VWS[Φ] = ν11
∑

r,a,r̃,s̃,ã,b̃

φr̃ã∗r φ
r̃ã
r φ

s̃b̃∗
a φ

s̃b̃
a

+ν21
∑

r,a,r̃,s̃,ã,b̃

φr̃ã∗r φ
r̃b̃
r φ
s̃b̃∗
a φ

s̃ã
a

+ν12
∑

r,a,r̃,s̃,ã,b̃

φr̃ã∗r φ
s̃ã
r φ

s̃b̃∗
a φ

r̃b̃
a

+ν22
∑

r,a,r̃,s̃,ã,b̃

φr̃ã∗r φ
s̃b̃
r φ
s̃b̃∗
a φ

r̃ã
a . (31)

Imposing now the conditions (4) and (15), eliminating
thus φ2̃r in terms of φ

1̃
r = φr , we find that the κ terms in VW

are of the same form as the λ term, so that the whole of VW
reduces to

VW[Φ] =−µW|φ|
2+λW(|φ|

2)2 , (32)

i.e. the same as in the standard electroweak theory, only
with µW = 2µ

′
W, and λW = 4λ

′
W+4κ1W+2κ2W+2κ3W.

Imposing next the conditions (12) on VS, we find that the
κ1S term becomes the same as the λS term, while the κ2S
and κ3S terms take on the same form, so that the whole of
VS reduces to

VS[Φ] =−µS
∑

a,ã

(

φã∗a φ
ã
a

)

+λS
[

∑

a,ã

(

φã∗a φ
ã
a)
]2

+κS
∑

a,b,ã,b̃

(

φã∗a φ
b̃
a

)(

φb̃∗b φ
ã
b

)

, (33)

which is the same as the framon potential for the pure su(3)
theory given in [1], only with µS = µ

′
S, λS = λ

′
S+κ1S, and

κS = κ2S+κ3S. Similarly, imposing both (11) and (12), one
finds that in VWS, the ν terms are equal in form in pairs,
giving

VWS[Φ] = ν1|φ|
2
∑

a,ã

φã∗a φ
ã
a+ν2|φ|

2
∑

a

∣

∣

∣

∑

ã

(

αã∗φãa
)

∣

∣

∣

2

,

(34)

with ν1 = 2ν11+ν12 and ν2 = 2ν21+ν22.
As far as we can see, given the criteria for invariance

under the prescribed symmetries and renormalisability,
the potential V [Φ] so constructed is unique.

4 The framon potential vacuum

Our next job is to find the minima of the framon poten-
tial to identify the vacuum, which, as we shall see, has
some intriguing properties with interesting consequences.
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The problem is of course in principle entirely soluble just
by differentiating the potential with respect to the various
components of the framon fields, but, the potential being
rather complicated, it pays first to examine the problem
qualitatively to see what answer one might expect. To do
so, we find it convenient to express the potential in terms
of the 3-vectorsα and φa, a= 1, 2, 3; thus

V [Φ] =−µW|φ|
2+λW(|φ|

2)2−µS
∑

a

|φa|
2

+λS
(

∑

a

|φa|
2
)2

+κS
∑

a,b

∣

∣

(

φ∗a ·φb
)∣

∣

2

+ν1|φ|
2
∑

a

|φa|
2−ν2|φ|

2
∑

a

∣

∣

(

α∗ ·φa
)∣

∣

2
.

(35)

Notice that α and φa, a = 1, 2, 3, here are vectors in
s̃u(3) space, not in su(3) space as were the vectors φã

in (25) for the kinetic energy term AKE. The signs of
the coefficients µ, λ, κ and ν are all in principle arbitrary
as far as invariance is concerned, but we shall choose
them all to be positive for the present discussion. The
chosen signs for the µ and λ are the same as for the
standard electroweak theory and are not new, therefore.
The signs chosen for ν1 and ν2 are not really neces-
sary for our purpose as far as we can see, but they are
chosen such only for ease of presentation. This leaves
then the sign chosen for κS as the only genuinely new
assumption.
To study the minimisation problem of the above po-

tential (35), we shall proceed in two steps. We shall con-
sider first the two parts of the potential labelled previ-
ously as VW and VS, the former depending only on the
weak framon φ and the latter depending only on the
strong framons φa. Then, secondly, we shall examine
the effect of the remaining terms linking the weak and
strong sectors, namely ν1 and ν2, which we shall treat
as disturbances on the purely weak and purely strong
potentials.
The weak potential comprising the first two terms

in (35) is the same as in standard electroweak theory with
minimum at |φ|2 = µW/(2λW), of which nothing more
needs to be said. The strong potential consisting of the
following three terms in (35) has more intricate features.
We notice first that the κS term is the only term that de-
pends on the relative orientations among the vectors φa,
a= 1, 2, 3, the other two terms µS and λS being functions
only of their lengths |φa|. Hence one can minimise first the
κS term with respect to the orientations of the vectors and
find for κS positive that the three vectors φa, a= 1, 2, 3, at
the minimum are mutually orthogonal. This means that at
the minimum one can omit from the κS term all terms with
a �= b, leaving

VSR[Φ] =−µS
∑

a

|φa|
2+λS

(

∑

a

|φa|
2
)2

+κS
∑

a

(

|φa|
2
)2
, (36)

depending only on the lengths |φa|, and minimising it with
respect to these, easily gives

|φ1|
2 = |φ2|

2 = |φ3|
2 =

µS

6λS+2κS
. (37)

In other words, at the minimum, the framon fields φa when
normalised would form an orthonormal triad, exactly as
what one would expect for frame vectors. A little more de-
tail for the properties of the strong potential VS can be
found in [1].
We turn now to the terms ν1 and ν2 linking the weak

and strong sectors. The ν1 term affects only the squared
length |φ|2 of the weak framon and the squared length

ζ2S =
∑

a

|φa|
2 (38)

of the strong one, and these thus present no very new fea-
tures. We shall thus first focus on the influence of the ν2
term on the framons in the strong sector. We shall regard
this effect as perturbative, seeing that the ν terms as com-
pared with the terms in the strong potential are of the
order |φ|2/|φa|

2, which we have reason to believe is small.
However, this is just a matter of convenience, for most of
what we conclude would still hold even if this turns out not
to be true.
We recall that, because of the κS term in the strong

potential, its minimisation implies that the framons φa
form an orthogonal triad all of the same length. We ask
now what will happen when we minimise the κS and ν2
terms together. Consider first the situation when these
framons are kept still having the same length, thus allow-
ing only their orientations to vary. For the + sign of the
ν2 term that we have chosen, this term is smallest when
the framons φa are all aligned with the vector α, but
this is opposed by the κS term which, to attain its small-
est value, would want instead the framons to be mutually
orthogonal. The result of minimising the two terms to-
gether would thus be a compromise in which the originally
orthogonal triad is squeezed together a little towards the
vector α, which, by the symmetry of the problem, would
be placed symmetrically with respect to the triad. The
amount of distortion δ to the orthogonal triad would be of
the order |φ|2/|φa|

2.
Next, consider the opposite situation when the framons

are kept mutually orthogonal but allowed to change their
lengths relative to one another. We recall first that the
µS and λS terms of the purely strong potential depend
only on ζS, not on how it is distributed among the three
lengths |φa|. It was the κS term whose minimisation gave
the result that the three lengths should be equal. How-
ever, this is again opposed by the ν2 linkage term, which,
to achieve its smallest value, would prefer to have all the
weight of ζS attributed to just one of the framons φa and
α to be aligned with it. Minimizing the two terms together
would thus once more lead to a compromise in which the
minimum would be displaced from the symmetrical point
favoured by the purely strong potential to a point with the
lengths of the φa differing from one another by amounts
of the order ζSδ, and with the vector α aligned with the
longest.
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From the conclusion in the above two extreme situa-
tions, it is then not difficult to visualise what will hap-
pen in the actual situation when the framons are allowed
both to deviate from mutual orthogonality and to change
in length relative to one another. The original orthogonal
triad will be squeezed slightly by an amount of order
|φ|2/|φa|

2, while at the same time the framons will devi-
ate in relative length from one another by amounts of the
same order, with the vector α snuggling up to the longest
among them. Since the squeezing of the orthogonal triad
has an effect similar to giving the framons different lengths
in reducing the value of the potential, one can imagine
a kind of trade-off between the two, or imagine that the
minimum of the potential is degenerate with respect to
the amount of squeeze on the triad so long as the effect
is compensated by a simultaneous change in the relative
framon lengths in a prescribed manner. The degeneracy
would be 2-dimensional, there being two angles in the triad
to be squeezed or two relative lengths of vectors to be
varied.
Next, we ask how the vector α will change when the

relative lengths of the strong framons vary. We note first
that when the strong framons φa are strictly orthogonal to
one another and have the same length, then the ν2 term
will have no preference for the direction of α, the term be-
ing proportional to the sum of the squares of the direction
cosines of α and therefore being independent of the direc-
tion of α. However, as soon as the framons are allowed to
have different lengths, then α will flop to align itself with
the longest one, for the ν2 term will then acquire its min-
imum value. But if we now allow the orthogonality also
to be distorted, then α can no longer align itself exactly
with the longest framon, for its inner products with the
shorter framons will now also contribute. Hence,α will end
up quite closely but not exactly aligned with the longest
framon. Nevertheless, for small squeezing angles, the sys-
tem is close to being unstable so that even a small change
in relative lengths of the framons from identity would be
enough to bring about a large change in the direction of α.
In other words, if we choose to write

(|φ1|, |φ2|, |φ3|) = ζS(x, y, z) , x
2+y2+ z2 = 1 , (39)

considering r = (x, y, z) itself as a unit vector so that
changes in the relative lengths of the φa can be pictured as
a rotation of this vector, then our previous conclusion can
be restated as saying that a small rotation of r will lead to
a large rotation of α, or that the directions of r and α are
coupled such that rotations in r will become magnified in
α. The smaller the value of the squeezing angle δ, the closer
is the system to instability, and the more effective is the
magnification.
All these properties of the vacuum can, of course, be

derived just by minimising the framon potential (28). How-
ever, the algebraic complications, mainly due to the devia-
tions of the vacuum from orthonormality, tend to obscure
the basic structure of the calculation. For clarity of presen-
tation, therefore, we shall work out in full here only a sim-
plified version of it, where there are only two colours (and
hence only two fermion generations as the dual of colour)

instead of the actual 3. This will contain in paraphrase al-
ready all the essential features in the actual 3-generation
problem. The calculation on the vacuum and its subse-
quent applications for the actual 3-generation case will, in
this paper, be carried only out to such an approximation
and extent as to satisfy ourselves that it holds no surprises
beyond what is discovered from the 2-generation model.
A full calculation is under way and will be reported on sep-
arately if found necessary.
By the 2-G (two colours and two generations) model of

the strong sector we mean a theory with a local su(2) sym-
metry representing colour plus a global s̃u(2) symmetry
representing generations. Such a theory can, as described
at the beginning of Sect. 2, be formulated via (4) with
a smaller number of framons, as with the electroweak the-
ory. However, in order to simulate better the actual 3-G
case, we shall take the framon fields here as the components
of a 2×2 matrix Φ, satisfying only the constraint that the
determinant be real.
Our convention, we recall, is that the columns of Φ

transform as doublets under local su(2), while its rows
transform as antidoublets under global s̃u(2). We can then
choose to work in the (local) gauge, where the first column
of Φ points in the first direction and is real, the three de-
grees of freedom in su(2) being just sufficient for us to do
so. The condition that the determinant of Φ be real then
implies the second diagonal element to be real also. We
shall refer henceforth to this as the triangular gauge, in
which Φ can be parametrised as

Φ=

(

X cos δ X sin δ eiφ

0 Y

)

. (40)

This Φ, representing the strong framon fields, is coupled
in the potential (28) to the weak sector via the vector α,
which we parametrise in this gauge as

α=

(

cosα e−iβ

sinα e−iγ

)

. (41)

We can then write the potential as

V [Φ] =−µWζ
2
W+λWζ

4
W−µS(X

2+Y 2)+λS(X
2+Y 2)2

+κS(X
4+Y 4+2X2Y 2 sin2 δ)+ν1ζ

2
W(X

2+Y 2)

−ν2ζ
2
W[(X cos δ cosα+X sin δ sinα cos θ)

2

+X2 sin2 δ sin2 α sin2 θ]

−ν2ζ
2
WY

2 sin2 α (42)

as a function of the six variablesX, Y , δ and α,

ζ2W = |φ|
2, θ = φ+β−γ . (43)

The vacuum of the potential is to be obtained by
putting the derivatives of V with respect to all six vari-
ables to zero. First, differentiating with respect to θ, we
easily obtain that the minimum occurs at θ = 0. Differenti-
ating with respect to the remaining five variables, we then
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obtain, for θ = 0,

ζ2S =
2µS+ν2ζ

2
W[cos

2(α− δ)+sin2 α]−2ν1ζ2W
4λS+2κS(1+sin

2 δ)
,

(44)

∆=

(

ν2ζ
2
W

2κSζ2

)

cos(2α− δ)

cos δ
, (45)

sin 2δ = 2

(

ν2ζ
2
W

2κSζ2

)

sin 2α

1+∆
, (46)

sin 2(α− δ) =

(

1−∆

1+∆

)

sin 2α (47)

and

ζ2W =

2µW+ν2ζ
2
S [(1+∆) cos

2(α− δ)+ (1−∆) sin2 α]−2ν1ζ2S
4λW

,

(48)

where we have written

X = ζSx , Y = ζSy , (49)

with

∆= x2−y2 , x2+y2 = 1 . (50)

Interestingly, these equations can be solved explicitly
as follows. We notice first that (47) is dependent on the
two equations before it, and can thus be omitted. This
leaves then only four equations in all for our five unknowns
ζS, ζW, ∆, δ and α, meaning thus that the vacuum has
a 1-dimensional degeneracy. Next, we see that the two
equations (45) and (46) are solved by

sin δ =

√

R2−∆2

1−∆2
, sinα=

√

(R−∆)(1+R)

2R(1−∆)
, (51)

in terms of∆, or alternatively by

∆=
R(R+cos2α)

1+R cos 2α
, sin δ =

R sin 2α
√
1+R2+2R cos 2α

,

(52)

in terms of α, with

R=
ν2ζ

2
W

2κSζ2S
. (53)

Substitution of these results into the remaining equations
then gives after some algebra

ζ2S =
µS

2λS+2RκS(ν1/ν2)+κS(1−R)
, (54)

ζ2W =
2µW+ν2ζ

2
S(1+R)−2ν1ζ

2
S

4λW
, (55)

R =
2µWλSν2+κSν2µW+ν

2
2 −2ν1ν2

8λWµSκS−2κSµWν1+κSν2µW−ν22
, (56)

where we notice that R is independent of ∆ or α, i.e. con-
stant over the degenerate vacuum, and hence so are also
ζS and ζW by (54) and (55). These results confirm the
conclusions of the qualitative arguments above that both
the deviations ∆ and δ of the framons from orthonormal-
ity are proportional to the supposedly small parameter R,
and that changes in ∆ and/or δ of order R are enough
to produce changes in α of order unity. The solution (52)
in terms of α is particularly convenient in that it can be
extended to all α ranging from 0 to 2π, i.e. over all four
quadrants. For α = nπ/2, i.e. when the vector α is point-
ing along any of the coordinate axes, we have δ = 0 or
we see that the framons are orthogonal but are not of
the same length, ∆ =±R. In between, the framons devi-
ate from orthogonality with δ > 0 for α pointing in the
first and third quadrants, but δ < 0 in the second and the
fourth.
The analogous problem in the actual 3-G case, though

much more complicated, can be worked out along similar
lines. We choose again to work in the triangular gauge,
where the framon field can be parametrised as

Φ=

⎛

⎝

X cos δ1 X sin δ1 sinγ e
iχ3 X sin δ1 cos γ e

iχ2

0 Y cos δ2 Y sin δ2 e
iχ1

0 0 Z

⎞

⎠ ,

(57)

and the vector α as

α=

⎛

⎝

cos θ e−iβ1

sin θ sinφ e−iβ2

sin θ cosφ e−iβ3

⎞

⎠ . (58)

Substituting these into the formula (28), one obtains for
the framon potential

V [Φ] =−µWζ
2
W+λWζ

4
W

−µS(X
2+Y 2+Z2)+λS(X

2+Y 2+Z2)2

+κS
{

X4+Y 4+Z4+2X2Y 2 sin2 δ1 sin
2 γ cos2 δ2

+2X2Y 2 sin2 δ1 cos
2 γ sin2 δ2

+2X2Z2 sin2 δ1 cos
2 γ+2Y 2Z2 sin2 δ2

+X2Y 2 sin2 δ1 sin 2γ sin 2δ2 cos(θ1+ θ2− θ3)
}

+ν1ζ
2
W(X

2+Y 2+Z2)

−ν2ζ
2
W

{

X2
(

cos2 δ1 cos
2 θ

+sin2 δ1 sin
2 γ sin2 θ sin2 φ

+sin2 δ1 cos
2 γ sin2 θ cos2 φ

+
1

2
sin 2δ1 sin γ sin 2θ sinφ cos θ2

+
1

2
sin 2δ1 cos γ sin 2θ cosφ cos θ3

+
1

2
sin2 δ1 sin 2γ sin

2 θ sin 2φ cos(θ2− θ3)
)

+Y 2
(

cos2 δ2 sin
2 θ sin2 φ+sin2 δ2 sin

2 θ cos2 φ

+
1

2
sin 2δ2 sin

2 θ sin 2φ cos θ1
)

+Z2 sin2 θ cos2 φ
}

(59)
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in terms of the 12 variables X,Y, Z, δ1, δ2, γ, θ, φ, θ1, θ2, θ3
and ζW with

θ1 =−χ1−β2+β3 , θ2 =−χ3−β1+β2 ,

θ3 =−χ2−β1+β3 . (60)

Again, the vacuum is to be given by putting to zero
the derivatives of the framon potential with respect to all
these 12 variables. The resulting equations are quite com-
plicated and have been worked out so far only to first order
in ζ2W/ζ

2
S . First, one finds from the derivatives with respect

to θi that these variables should vanish at the minimum,
thus giving

χ1 = β3−β2 , χ2 = β3−β1 , χ3 = β2−β1 , (61)

and the θi are eliminated from the system. The remain-
ing equations give first φ= γ, which we use to eliminate φ,
leaving the following eight equations:

ζ2S =
3µS+ν2ζ

2
W−3ν1ζ

2
W

6λS+2κS
, (62)

∆1 =
ν2ζ

2
W

2κSζ2S
(cos2 θ− sin2 θ sin2 γ) , (63)

∆2 =−
ν2ζ

2
W

2κSζ2S
sin2 θ cos 2γ , (64)

δ1 =
3ν2ζ

2
W

4κSζ2S
sin 2θ , (65)

δ2 =
3ν2ζ

2
W

4κSζ2S
sin2 θ sin 2γ , (66)

δ1 =
3

2
tan 2θ

(

∆1+∆2 cos
2 γ−

1

3
δ2 sin 2γ

)

, (67)

δ2 =−
3

2
∆2 tan 2γ , (68)

ζ2W =
1

6λW

{

3µW−3ν1ζ
2
S

+ν2ζ
2
S

(

1+2∆1−3∆1 sin
2 θ+∆2

−3∆2 sin
2 θ cos2 γ+ δ1 sin 2θ+ δ2 sin 2γ sin

2 θ
)}

,

(69)

where we have written, in analogy to the 2-G model,

X = ζSx , Y = ζSy , Z = ζSz , (70)

with

∆1 = x
2−y2 , ∆2 = y

2− z2 , x2+y2+ z2 = 1 . (71)

Again, it can be shown that two of these equations,
e.g. (67) and (68), are dependent on the others and can
be omitted, leaving only six equations for eight unknowns,
meaning thus that the vacuum has a 2-dimensional de-
generacy as anticipated. Further, (63)–(66) imply that the
quantities ∆1, ∆2, δ1 and δ2 are all of order ζ

2
W/ζ

2
S, and

their variations to that order will give rise already to
changes in θ and γ of order unity. In other words, all the
properties surmised earlier by qualitative arguments are
again confirmed.

Equations (63)–(66) are solved explicitly to leading
order in terms of∆1,∆2 and R as follows:

sin θ =

√

2R−2∆1−∆2
3R

,

sin γ =

√

R−∆1+∆2
2R−2∆1−∆2

,

δ1 =
√

(R+2∆1+∆2)(2R−2∆1−∆2) ,

δ2 =
√

(R−∆1−2∆2)(R−∆1+∆2) , (72)

or alternatively in terms of θ, γ and R as

∆1 =R(cos
2 θ− sin2 θ sin2 γ) ,

∆2 =−R sin
2 θ cos 2γ ,

δ1 =
3

2
R sin 2θ ,

δ2 =
3

2
R sin2 θ sin 2γ . (73)

Substitution of (72) into the other equations then gives ζW
and ζS, and hence R also, which again all turn out to be
constant, i.e. independent of ∆1 and ∆2, or of θ and γ,
but the explicit expressions are not of immediate interest.
Similar remarks to those above for the 2-G model on the
dependence of the vacuum on the direction of α apply also
to the present case. As α varies over the unit sphere, the
framon triad gets distorted in various ways from orthonor-
mality, but the distortions are never larger than of orderR.
The remarkable property of the vacuum here being de-

generate and depending on the vector α is of quite cru-
cial significance to our explanation later for the fermion
mass hierarchy and mixing pattern, and it deserves a closer
examination of its origin. We recall that the potential VS
for the strong framon sector by itself has a vacuum that
is rather featureless, where the strong framons just form
an orthogonal triad all having the same length. Neverthe-
less, this vacuum is degenerate because of s̃u(3) invariance,
meaning that one can change at will the orientation of the
orthogonal triad in s̃u(3) space, although this degeneracy is
not of much interest, since there is no reference point to tell
whether one has indeed made such a change. The vector α
coming from the weak sector, however, gives a reference
point for the orientation and distorts at the same time the
vacua from orthonormality via the ν2 term in the linkage
part VWS of the framon potential, so that the vacua now
look different from one another, depending on the value
of α. One can say that it is the weak sector su(2) that
breaks the s̃u(3) invariance of the strong sector, in a man-
ner similar in spirit, though not in details, to the breaking
by u(1) of the weak sector symmetry s̃u(2) in the elec-
troweak theory [1, 6]. Nevertheless, the theory overall still
has s̃u(3) invariance, and so must also the set of degener-
ate vacua labelled by α. And since α varies under a s̃u(3)
transformation, it has to follow that the different vacua la-
belled by different values of α are equivalent under s̃u(3)
transformations.
Let us work this out explicitly, again for simplicity first

in the 2-G model. Let us start in a fixed s̃u(2) gauge with
α= α0 and α

†
0 = (1, 0). This corresponds to α = 0 in the
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notation of (52) and gives the vacuum in the triangular
(local su(2)) gauge for this value of α as

ΦVAC(α0) =

⎛

⎝

√

1+R
2 0

0
√

1−R
2

⎞

⎠ . (74)

Now the effect of an s̃u(2) transformation, say,

A=

(

cosα e−iβ − sinα eiγ

sinα e−iγ cosα eiβ

)

(75)

operating on α0 from the left gives

α=Aα0 =

(

cosα e−iβ

sinα e−iγ

)

. (76)

The value of Φ for the vacuum corresponding to this new
value of α, but still in the same s̃u(2) and su(2) gauge,
is obtained by operating with A−1 from the right on
ΦVAC(α0) above, giving

ΦVAC(α) = ΦVAC(α0)A
−1

=

⎛

⎝

√

1+R
2 cosαe

iβ
√

1+R
2 sinαe

iγ

−
√

1−R
2 sinαe

−iγ
√

1−R
2 cosαe

−iβ

⎞

⎠ .

(77)

This is not in the triangular form, but it can be trans-
formed into one by an su(2) transformation (i.e. a change
of the local su(2) gauge), say

Θ =

(

cos θe−iφ − sin θeiχ

sin θe−iχ cos θeiφ

)

, (78)

operating from the left, thus

̂ΦVAC(α) =ΘΦVAC(α) . (79)

A straightforward calculation then shows that ̂ΦVAC(α)
will be triangular if we take φ= β, χ= γ, and

√
1+R sin θ cosα=

√
1−R cos θ sinα , (80)

or

sin θ =

√

1−R

1+R cos 2α
sinα . (81)

Substituting this into (79) gives

̂ΦVAC(α) =

⎛

⎝

√

1+R cos 2α
2

R sin 2α√
2(1+R cos 2α)

e−iβ+iγ

0
√

1−R2

2(1+R cos 2α)

⎞

⎠ . (82)

Comparing this with (40) through (52) shows that the
two expressions are identical. This means that the various
vacua labelled by different values of α in (52) are indeed
gauge equivalent as anticipated.
A similar conclusion should hold also for the actual 3-G

case. To check that it is so, we work again to leading order

in R. As in the 2-G model above, we work in the s̃u(3)
gauge with α†0 = (1, 0, 0) and in the su(3) gauge, where the
value of φ at the vacuum is triangular, which means, ac-
cording to (73), that it is actually diagonal:

ΦVAC(α0) =

⎛

⎜

⎜

⎜

⎝

√

1+2R
3 0 0

0
√

1−R
3 0

0 0
√

1−R
3

⎞

⎟

⎟

⎟

⎠

. (83)

A general vacuum in the same gauge is obtained by an
s̃u(3) transformationA−1 operating on ΦVAC(α0) from the
right, where A can as usual be parametrised as

A=

⎛

⎝

eiα1 0 0
0 eiα2 0
0 0 e−iα1−iα2

⎞

⎠

⎛

⎝

c3 −s3e−iσ3 0
s3e
iσ3 c3 0
0 0 1

⎞

⎠

×

⎛

⎝

c2 0 −s2e−iσ2

0 1 0
s2e
iσ2 0 c2

⎞

⎠

⎛

⎝

1 0 0
0 c1 −s1e−iσ1

0 s1e
iσ1 c1

⎞

⎠ ,

(84)

where we have abbreviated sines and cosines of the various
angles to si and ci. Although the 3-G vacuum is labelled
by these A and not just by the vector α as in the 2-G
case, for the present calculation we restrict ourselves only
to those A with s1 = 0, i.e. no rotation in the 23-plane.
This is sufficient to take α0 to any α, say (58). Following
then the notation there for the phases, we have for A the
expression

A=

⎛

⎝

c2c3e
−iβ1 −s3e−i(β1+σ3) −c3s2ei(β3+β2+σ3)

c2s3e
−iβ2 c3e

−i(β2+σ3) −s2s3ei(β1+β3+σ3)

s2e
−iβ3 0 c2e

i(β1+β2+σ3)

⎞

⎠ .

(85)

This gives for the vacuum at α

ΦVAC(α) = ΦVAC(α0)A
−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

1+2R
3 c2c3e

iβ1

√

1+2R
3 c2s3e

iβ2

√

1+2R
3 s2e

iβ3

−
√

1−R
3 s3

√

1−R
3 c3 0

×ei(β1+σ3) ×ei(β2+σ3)

−
√

1−R
3 s2c3 −

√

1−R
3 s2s3

√

1−R
3 c2

×e−i(β2+β3+σ3) ×e−i(β1+β3+σ3) ×e−i(β1+β2+σ3)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(86)

ΦVAC(α) can be returned to the triangular form by apply-
ing from the left an su(3) transformation Θ of the same
form as A in (85), only with si and ci replaced by s

′
i and c

′
i,

where
√

1+2R

3
c2s
′
2 =

√

1−R

3
s2c
′
2 (87)

and

s2c3s
′
3 = s

′
2c
′
3s3 . (88)
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A straightforward, though somewhat lengthy, calcula-
tion via (87), (88) and (73) then shows that the re-
sulting triangular form is indeed identical to (57). This
means that one has shown that also for the 3-G case the
vacua for different values of α are gauge equivalent to
one another, although here so far only to leading order
in R.
We recall that all these intriguing properties of the vac-

uum arise from the special form of the framon potential,
which is itself a consequence of the double invariance under
both the local u(1)× su(2)× su(3) and the global ũ(1)×
s̃u(2)× s̃u(3) symmetries basic to the whole framon idea.
We note in particular the delicate interplay between the
electroweak and strong sectors via the linkage terms im-
plied by the invariance, which distort the strong vacuum
from its symmetry position, and couple at the same time
the distorted vacua to the vector α coming from the weak
sector, so that if the vacuum moves, it will bring the vec-
tor α with it. We see, therefore, that the chain of logic in
arriving at the above results is quite intricate and tightly
knit.

5 Confinement and the boson spectrum

The framon potential as given, for example, in (35), with
negative |φ|2 terms is of a form usually interpreted as typ-
ical of spontaneously broken gauge symmetries. But, as
pointed out as long ago as 1978 by ’t Hooft [2] and by
Banks and Rabinovici [3], and again as repeatedly empha-
sised more recently by ’t Hooft [6], the electroweak theory
that has such a potential can equally be interpreted as
a confining theory, in which the gauge symmetry su(2) re-
mains exact, what is broken being just (in our language)
the global s̃u(2) symmetry “dual” to it. And the two pic-
tures, i.e. confinement and spontaneously broken symme-
try, are mathematically equivalent in the present applica-
tions of the electroweak theory, although in the long run
at ultra high energies, they may diverge in physical con-
tent. For a discussion of the confinement picture in the
context of the framon idea we are here exploring, see for
example [1].
That being the case, we shall adopt in the present treat-

ment, as our assumption (B), exclusively the confinement
picture, which we find both practically more convenient
and conceptually more appealing, although much of what
we do here, though perhaps not all, could equally be per-
formed in the symmetry breaking picture. This means that
we shall consider both the su(2) and the su(3) local gauge
symmetries as confining, with only the difference that the
confinement in su(2) is much deeper than in su(3). This lat-
ter assumption is necessary for the confinement picture to
hold as a realistic description of nature, since the confine-
ment by colour su(3) is already revealed to us by present
experiment in the sense that we have already for decades
been probing hadrons as compound states with colour con-
finement revealing their structure in terms of their con-
stituents. On the other hand, the equivalent compound
states in su(2) confinement, such as leptons and quarks,

still appear to us as point-like in all experiments so far per-
formed. It was thus assumed by ’t Hooft and implicitly also
by Banks and Rabinivici that confinement in su(2) is con-
siderably deeper than with colour, so that only in future
deep inelastic experiments with ultra high energies not yet
available to us will the structure of quarks and leptons be
revealed.We accept this assumption, for the moment with-
out further question, although we hope to return to it with
respect to a non-abelian version of electromagnetic duality
at a later stage for reasons to be explained in the conclud-
ing section.
In the confinement picture then, let us ask what the bo-

son spectrum is for the theory that has been constructed.
To answer this question, we have first to make clear what
exactly this question means. The su(2) and su(3) gauge
symmetries being both confined, only states that belong
to the singlet representation in both will be observable as
propagating particles in free space. However, while per-
forming a deep inelastic scattering experiment of an elec-
tron on a proton, for example, we are already probing in-
side the proton where coloured objects such as quarks and
gluons can propagate freely, and only su(2) remains con-
fined. Let us call this the standard model scenario, for this
is indeed what the standard model, as it now stands, rep-
resents in terms of the scheme under consideration. In the
standard model scenario then, the boson spectrum would
mean a list of all su(2) singlet boson states, whether colour
neutral or otherwise, which can be formed as bound or
compound states from the fundamental fields by su(2) con-
finement. Given the assumption that su(2) confinement is
much deeper than colour su(3) confinement, these states
will appear as quasi-elementary under all present experi-
mental conditions. On the other hand, one can consider
also what one can call the soft hadron scenario, in which ex-
perimental conditions are such that one never probes inside
hadrons and sees all hadrons as quasi-elementary objects
as one did some decades ago. Then the boson spectrum
would mean a list of the bound or compound states that
can be formed by confining together, via either su(2) or
su(3) confinement or both, the fundamental gauge boson
and framon fields so far considered and eventually also the
fundamental fermion fields yet to be introduced.
Start then with the standard model scenario in which

only the electroweak su(2) but not colour su(3) confines.
Now of the fundamental boson fields introduced in Sect. 2,
only the weak gauge field Bµ and framon field φ carry
(local) su(2) indices and have to be confined; the others,
i.e. the colour gauge fields Cµ and the strong framon field
φa, being already (local) su(2) singlets, can exist as freely
propagating particles inside hadrons. What is then the bo-
son spectrum in such a situation?
We notice that, apart from the ν1 and ν2 terms in the

framon potential linking the weak and strong framon sec-
tors, the part of the action involving the weak gauge and
framon fields Bµ and φ in the present framework is iden-
tical to that of the standard electroweak theory. Hence, an
analysis similar to that in [1–3] for the pure electroweak
theory is expected to give for the boson spectrum in su(2)
confinement essentially the same result. Explicitly, let us
choose to work in the gauge when the framon field φ points
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in the up direction and is real. In this gauge, the part of
the action involving only the weak fields will reduce to
the standard electroweak action in the symmetry breaking
picture evaluated in the unitary gauge when the vacuum
expectation value for φ points in the up direction and is
real, with only the difference that the su(2) gauge field Bµ
is everywhere replaced by its gauge transform:

˜Bµ =
i

g2
Ω†(∂µ− ig2Bµ)Ω , (89)

where Ω is the transformation we have used above to fix
the gauge. Notice that Ω† being the transformation that
rotates the local su(2) frame to align it with the global
s̃u(2) frame, Ω transforms from the left under su(2) but
from the right under s̃u(2), so that ˜Bµ in (89), with all
su(2) indices saturated, is an su(2) singlet. Indeed, to lead-
ing order in the fluctuations H of |φ| = F +H about its
vacuum value F =

√

µW/2λW at the minimum of the po-
tential VW, we can write

Tr
(

Φ†(∂µ− ig2Bµ)Φ
)

≈ ig2 ˜Bµ+ · · · , (90)

where Φ is the 2×6matrix representing the “weak” framon
field φr̃ãr , and the trace Tr is taken over only the s̃u(3) in-
dices. We see thus that the massive vector boson ˜Bµ, which
in the conventional treatment is considered to be the gauge
boson having acquired a mass via symmetry breaking, is
now to be regarded as a p-wave bound state of the “weak”
framonwith its own conjugate. Similarly, it canbe seen from

tr(Tr(Φ†Φ))≈ F 2+2FH+ · · · , (91)

where the two traces are taken over r̃ and ã indices, that
the standard Higgs bosonH is now to be regarded as the s-
wave bound state of the framon–antiframon pair. But since
the action is the same as in the pure electroweak theory
in the symmetry breaking picture except for these reinter-
pretations, we recover the same mass spectrum with the
familiar mixing between γ and Z. Indeed, apart from the
trace over ã indices, these arguments are very similar to
those in the pure electroweak theory, some more details of
which can be found e.g. in [1].
There is one difference, however, with the conventional

electroweak theory in that, because the “weak” framons
here carry a ũ(1) charge, so also will their bound states.
This can easily be worked out for the various states just
by summing the charges of the constituents and these are
listed below together with the u(1) charge as [q, q̃]:

H ∼ Tr(Φ†Φ) , [0, 0] ,

W+µ ∼ φ
(−)†(Aiµτi

)

φ(+), [1,−1] ,

W−µ ∼ φ
(+)†(Aiµτi

)

φ(−), [−1, 1] ,

γ–Z ∼ φ(±)†
(

Aiµτi
)

φ(±), [0, 0] . (92)

The question ofwhat this ũ(1) charge q̃ signifieswill be post-
poned until fermions are introduced in the next section.
Apart from this small but, as we shall see, important,

difference of a new conserved quantum number q̃, the re-
sult obtained above in the standard model scenario for

the purely weak sector is otherwise seen to be identical
to the conventional electroweak theory. Together with the
colour gauge boson Cµ, i.e. the gluon, which in the stan-
dard model scenario remains massless, these make up ex-
actly the boson content of the standard model. Hence, we
conclude that in the standard model scenario, the present
scheme differs in the boson content from the standard
model only in the strong framonsφa. Thus, so long as these
latter ones do not spoil the usual comparison of QCD with
experiment as, for example, in the running of the coupling
αs, which we have hope to show later, for the reason men-
tioned in the concluding section, to be indeed the case, we
can claim consistency. The ν1 and ν2 terms in the framon
potential so far neglected will mix the Higgs bosonH with
hadron states in a manner to be made explicit later, which
will change somewhat the properties ofH and its mass but
not the boson content in the standard model scenario.
The above conclusion on the boson content in the

standard model scenario is obtained by essentially just
a paraphrase in our more complex framework of ’t Hooft’s
and Banks and Rabinovici’s original arguments, which
took account only of the lowest bound states formed from
a framon–antiframon pair via su(2) confinement. However,
if we were to take seriously the confinement picture, not
just as a convenience or alternative to the conventional
symmetry breaking picture for the electroweak theory, but
as actually physical, then it would be difficult to exclude
the possibility of there being other boson states formed by
su(2) confinement, such as radial and orbital excitations
of the ground states, familiar to hadron spectroscopists
in the parallel scenario of colour su(3) confinement. We
then have to envisage a situation in which the actual boson
spectrum is considerably richer than that seen at present,
where the additional states, being presumably much heav-
ier than the ground states listed, are not noticeable at
present, but will be revealed later when higher experimen-
tal energies become available. Such a situation will obtain
not just in our special framework, but in any model where
the confinement picture for the electroweak theory is taken
as physical [10–12]1, and this has been analysed in this
context extensively and in detail already in the early pa-
per by Claudson, Farhi and Jaffe [12]. They not only listed
the many additional states possible, some with quite ex-
otic features, but also examined the effects these can have
on the physics accessible to present energies, for example
those on the electromagnetic form factors of quarks and
leptons. Apart from other results, their analysis of the lat-
ter effects confirms the intuition one had that, provided
the additional states are sufficiently heavy, they would not
disturb the correspondence between the confinement and
symmetry breaking pictures proposed. However, this still
leaves the question why the ground vector boson states
W and Z–γ are so much lighter than their radial and or-
bital excitations, in seeming contrast to what is seen in
the hadron spectrum obtained in the parallel case of colour
su(3) confinement. At one’s present stage of understand-
ing of su(2) confinement, unfortunately, one is still in no
better position to answer this question than in the days

1 For an example of recent work in this direction, see e.g. [13].
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of [12]. We note only at the speculative level an interest-
ing possibility, to be discussed in the concluding section
of this paper, which is connected to a non-abelian gener-
alisation of electromagnetic duality and to the question
mentioned above of why su(2) confinement is supposedly
so much deeper than colour confinement. Such questions,
however, of whether the confinement picture can indeed be
taken physical, and if so, what new effects or phenomena it
will imply at higher energies than those presently available,
can be postponed as they are not of immediate concern for
our present limited purpose here of just deducing from the
constructed framework some otherwise mystifying proper-
ties of the standard model. For this purpose, the ground
state boson spectrum listed above for the standard model
scenario is already sufficient.
Next, what about the soft hadron scenario when colour

is also confined? In that case, neither the gluon Cµ nor
the framon φa will remain free, but these have to be con-
finedwith one another orwith coloured fermions into colour
singlets to give a host of new states to the hadron spec-
trum. The details of this are not of immediate interest in
the present context of attempting to construct a protogenic
standardmodel. The hadron spectrum is already so compli-
cated in the standard model and so little understood that
some more states will not be easily detected or missed, es-
pecially if they are heavy and unstable as these new modes
promise to be. In any case, we are certainly not yet at the
stage to worry about such details. However, for reasons to
be made clear later and related to the linkage between the
weak and strong sectors via the ν1 and ν2 terms, we have
particular interest in the s-wave hadron bound states via
colour confinement of φ†aφa, namely the equivalents in the
strong sector of the Higgs fieldH in the electroweak sector,
for which we wish now to work out the spectrum.
For the strong framon potential VS by itself, this was

done already in [1]. We wish now, however, to take ac-
count also of the linkage ν1 and ν2 terms, which distort
the strong vacuum from orthonormality and make the cal-
culation considerably more complicated. Nevertheless, the
tactics developed there can still be applied with modifica-
tions. To do so, we choose again to work in the triangular
gauge, where we recall that the strong framon field φa or
Φ at vacuum is parametrised as in (57). We are now to
consider small fluctuations about the vacuum, which we
represent as

Φ=
⎛

⎜

⎜

⎝

X cos δ1+h1 (X sin δ1 sinγ+η3) (X sin δ1 cos γ+η2)
×eiχ3 ×eiχ2

0 Y cos δ2+h2 (Y sin δ2+η1)e
iχ1

0 0 Z+h3

⎞

⎟

⎟

⎠

,

(93)

where h1, h2 and h3 are real and η1, η2 and η3 complex.
These fluctuations give altogether nine degrees of freedom,
representing the nine real (strong) Higgs fields formed as
bound states of Φ†Φ. To readers more familiar with the
symmetry breaking picture, it may help to add that the
eight zero modes appearing in that picture that are to be

eaten up by the colour gauge bosons are here already taken
out of consideration by fixing to the triangular gauge.
The fluctuations hi and ηi span the Higgs modes but

are as yet neither mass eigenstates nor do they form an or-
thonormal basis. Again to avoid complicated details cloud-
ing the logic, we shall work these out first in the 2-Gmodel,
for which the parallel for (93) is

Φ=

(

X cos δ+h1 (X sin δ+η)e
iφ

0 Y +h2

)

. (94)

First, we need to be explicit on the unitary transformation,
taking the original frame in which the vacuum value of Φ is
triangular and the fluctuations appear as

Φ=

(

X cos δ+ δφ1̃1
(

X sin δ+ δφ2̃1
)

eiφ

δφ1̃2 Y + δφ2̃2

)

, (95)

to the frame where Φ itself, including fluctuations, is of the
triangular form (94). This is readily to first order in the
fluctuations seen to be

ΩDF =

(

1− i
X cos δ δφ

1̃
1I

1
X cos δ

(

δφ1̃2
)∗
eiφ

− 1
X cos δ δφ

1̃
2e
−iφ 1+ i

X cos δ δφ
1̃
1I

)

, (96)

where the subscript I denotes the imaginary part. Multi-
plying ΩDF to (95) and comparing with (94) then gives

h1 = δφ
1̃
1R ,

h2 = δφ
2̃
2R− (tan δ)δφ

1̃
2R ,

ηR = δφ
2̃
1R+

y

x cos δ
δφ1̃2R ,

ηI = δφ
2̃
1I−

y

x cos δ
δφ1̃2I− (tan δ)δφ

1̃
1I , (97)

where R denotes the real part.We can consider then the co-
efficients of δφãaR and δφ

ã
aI as an 8-vector. The vectors rep-

resenting h1, h2, ηR and ηI above are not all normalised nor
all mutually orthogonal as 8-vectors. But we can construct
easily from these via the standard Gram–Schmidt proced-
ure an orthonormal basis for the 4-dimensional subspace
they span, sayH1, H2, HR andHI, which are conveniently
represented as 2×2 complex matrices, giving respectively

̂V1 =

(

1 0
0 0

)

,

̂V2 =
√

x2 cos2 δ+y2

(

0 xy sin δ
x2 cos2 δ+y2

eiφ

− x
2 sin δ cos δ
x2 cos2 δ+y2

e−iφ 1

)

,

̂VR =
1

√

x2 cos2 δ+y2

(

0 x cos δeiφ

ye−iφ 0

)

,

̂VI = i

(

−x sin δ x cos δeiφ

−ye−iφ 0

)

. (98)

The mass matrix of these Higgs states HK can be
worked out by substituting (94) into the expression for the
framon potential and expanding to second order in the fluc-
tuations h1, h2, ηR, ηI and H (the fluctuation of the weak
framon φ about its vacuum value), obtaining a quadratic
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form in these. One then re-expresses this form in terms
of the orthonormal basis H1,H2,HR,HI listed above. The
coefficients of the various terms then give the Higgs mass
matrix, which is a little involved. Since we shall not need
this in detail, we shall give the answer only to first order in
our supposedly small parameter ζW/ζS:

MH =⎛
⎜⎜⎜⎜⎜⎝

0 ζWζS(2ν1−ν2) ζWζSν2 cos 2α −ζWζSν2 sin 2α 0

∗ 2(2λS+κS)ζ
2
S −2(λS+κS)ζ

2
S∆ 2(λS+κS)ζ

2
Sδ 0

∗ ∗ 2κSζ
2
S 0 0

∗ ∗ ∗ 2κSζ
2
S 0

∗ ∗ ∗ ∗ 2κSζ
2
S

⎞
⎟⎟⎟⎟⎟⎠
,

(99)

where the rows and columns are labelled, in order, by H,
H+, H−, HR and HI with H± = (1/

√
2)(±H1+H2). We

note only that the mass eigenstates will mix the “real”
states H, H+, H− and HR, but not the “imaginary” state
HI, the mixing being of order ζW/ζS, or lower, so that it
can in principle be worked out by perturbation theory to
that order. For what follows, however, we shall not need the
explicit form of the mass eigenstates.
The calculation for the actual 3-G case starting

from (93) follows along the same lines, but the algebra is
more complicated. We give here the transformationΩDF to
first order in the fluctuations δφãa:

ΩDF =

⎛

⎝

Ω11 Ω12 Ω13
Ω21 Ω22 Ω23
Ω31 Ω32 Ω33

⎞

⎠ , (100)

where

Ω11 = 1−
i

X cos δ1

(

δφ1̃1
)

I
,

Ω12 =

(

δφ1̃2
)∗
eiχ3

X cos δ1
,

Ω13 =

(

δφ1̃3
)∗
eiχ2

X cos δ1
,

Ω21 =−
δφ1̃2e

−iχ3

X cos δ1
,

Ω22 = 1−
i
(

δφ2̃2
)

I

Y cos δ2
+
i tan δ1 sin γ

(

δφ1̃2
)

I

Y cos δ2
,

Ω23 =

(

δφ2̃3
)∗
eiχ1

Y cos δ2
−
tan δ1 sinγ

(

δφ1̃3
)∗
eiχ1

Y cos δ2
,

Ω31 =−
δφ1̃3e

−iχ2

X cos δ1
,

Ω32 =−
δφ2̃3e

−iχ1

Y cos δ2
+
tan δ1 sin γδφ

1̃
3e
−iχ1

Y cos δ2
,

Ω33 = 1−
i
(

δφ3̃3
)

I

Z
+
i tan δ1 cos γ

(

δφ1̃3
)

I

Z
+
i tan δ2

(

δφ2̃3
)

I

Z

−
i tan δ1 tan δ2 sin γ

(

δφ1̃3
)

I

Z
(101)

and to first order inR the nine orthonormal Higgs states in
the analogous matrix notation of (98) which will be of use

later:

̂V1 =

⎛

⎝

1 0 0
0 0 0
0 0 0

⎞

⎠ ,

̂V2 =

⎛

⎜

⎝

0 δ1xy sin γ
x2+y2

eiχ3 0

− δ1x
2 sin γ

x2+y2
e−iχ3 1 0

0 0 0

⎞

⎟

⎠
,

̂V3 =

⎛

⎜

⎝

0 0 δ1xz cos γ
x2+z2

eiχ2

0 0 δ2yz
y2+z2

eiχ1

− δ1x
2 cos γ
x2+z2

e−iχ2 − δ2y
2

y2+z2
e−iχ1 1

⎞

⎟

⎠
,

̂WR1 =
1

√

y2+ z2

×

⎛

⎜

⎜

⎝

0 δ1xy
2 cos γ

x2+y2
eiχ3 δ1xz

2 sin γ
x2+z2

eiχ2

− δ1x
2y cos γ
x2+y2

e−iχ3 0 yeiχ1

− δ1x
2z sin γ
x2+z2

e−iχ2 ze−iχ1 0

⎞

⎟

⎟

⎠

,

̂WR2 =
1

√
x2+ z2

⎛

⎜

⎝

0 − δ2xy
2

x2+y2
eiχ3 xeiχ2

δ2x
2y

x2+y2
e−iχ3 0 0

ze−iχ2 0 0

⎞

⎟

⎠
,

̂WR3 =
1

√

x2+y2

⎛

⎝

0 xeiχ3 0
ye−iχ3 0 0
0 0 0

⎞

⎠ ,

̂W I1 =
i

√

y2+ z2

×

⎛

⎜

⎜

⎝

0 − δ1xy
2 cos γ

x2+y2
eiχ3 δ1xz

2 sin γ
x2+z2

eiχ2

− δ1x
2y cos γ
x2+y2

e−iχ3 −δ2y yeiχ1

δ1zx
2 sin γ

x2+z2
e−iχ2 −ze−iχ1 0

⎞

⎟

⎟

⎠

,

̂W I2 =
i

√
x2+ z2

⎛

⎜

⎝

−xδ1 cos γ − δ2xy
2

x2+y2
eiχ3 xeiχ2

− δ2x
2y

x2+y2
e−iχ3 0 0

−ze−iχ2 0 0

⎞

⎟

⎠
,

̂W I3 =
i

√

x2+y2

⎛

⎝

−xδ1 sin γ xeiχ3 0
−ye−iχ3 0 0
0 0 0

⎞

⎠ . (102)

6 The fermion sector

Extending next our consideration to the fermion sector, we
first have to specify what we are to take as our fundamental
fermion fields, which are, of course, to be given as repre-
sentations of the gauge symmetries of the theory, namely
u(1)× su(2)× su(3). Not having ascribed in our framework
any geometrical significance to fermion fields as we did to
the vector and scalar fields in the boson sector, we are
thrown back as usual to arguments of simplicity. By this
guideline then, let us take as fundamental fermion fields
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the following:

ψ = ψ(1, 1) , ψr = ψ(2, 1) ,

ψa = ψ(1, 3) , ψra = ψ(2, 3) , (103)

where inside the brackets, the first argument denotes the
dimension of the representation of the su(2) symmetry, the
second argument that of the su(3) symmetry. These are the
simplest possibilities involving as they do only the singlet
and fundamental representations of either su(2) or su(3).
We have yet to specify the u(1) charges q of the ψ

in (103), if any. Recall now the discussion in Sect. 2 on the
choice of the gauge group, which concluded with the choice
of the group U(1, 2, 3) defined there. The admissible u(1)
charges for the fermions (103) which are of necessity rep-
resentations of the group U(1, 2, 3) can then be read off
from (10). Let us concentrate first on the su(2) doublets
ψ(2, 1) and ψ(2, 3) and restrict ourselves as usual to those
with the smallest values of |q|, obtaining

ψ(±1/2)r = ψ(±1/2)(2, 1) , q =±
1

2
, (104)

ψ(1/6)ra = ψ(1/6)(2, 3) , q =
1

6
, (105)

where when necessary, the u(1) charge q will be carried as
a bracketed superscript as shown.
Notice that the fundamental fermion fields, like the

gauge boson fields, do not, and have no reason to, carry any
indices referring to the global symmetries ũ(1)× s̃u(2)×
s̃u(3). These have to do only with the global reference
frames and should thus affect only the framons.
In the confinement picture in which we work, only sin-

glets of the non-abelian local symmetries can exist as freely
propagating particles. Let us ask then what fermion spec-
trum we are to expect. Again, the answer depends on
whether we are in the standard model or soft hadron sce-
nario. Our primary concern is the standard model scenario
where the experimental conditions are as present, namely
where colour su(3) confinement has already been revealed,
but su(2) confinement has not, so that only su(2) singlets
are observed as freely propagating and appear to us as el-
ementary objects. In that case, only ψ(1, 1) and ψ(1, 3)
in (103) can appear free but ψ(2, 1) and ψ(2, 3) have to be
confined.
As in the pure electroweak theory treated by ’t Hooft [2]

and Banks and Rabinovici [1, 3], the lowest fermion bound
states obtained from ψ(2, 1) and ψ(2, 3) by su(2) confine-
ment are expected from their binding with those scalar
framon fields carrying su(2) indices, namely the “weak”
framons φr̃ãr , thus

χr̃ã =
∑

r

(

φr̃ãr
)∗
ψr , (106)

χr̃ãa =
∑

r

(

φr̃ãr
)∗
ψra . (107)

These are identified in the electroweak theory as respec-
tively left-handed leptons and quarks, which assignment
we here also adopt.

If we take the confinement picture as actually physical,
and not merely as an alternative presentation of the con-
ventional symmetry breaking picture in the electroweak
theory, then, just as in the case of boson bound states
formed from framons considered before, there can in prin-
ciple be many other fermion states obtainable as excita-
tions of leptons and quarks from binding the fundamental
fermions ψ(2, 1) and ψ(2, 3) with framons via su(2) con-
finement. At the moment, however, for our immediate pur-
pose of deducing the standard model properties from the
constructed framework, we shall be concerned only with
the leptons and quarks given explicitly above as the lowest
fermion bound states.
The first thing of interest to note in the above expres-

sions is that the bound states, in contrast to the fundamen-
tal fermionsψ, now carry global indices, r̃ and ã and indeed
also q̃, not yet exhibited, which they acquire through their
framon constituents. In particular, the r̃ indices for the
global s̃u(2) symmetry, which occurred already in the pure
electroweak theory treated by, for example ’t Hooft [6], was
taken there as representing up–down flavour. Explicitly, for
the present scheme, if we take r̃ =∓, we would have, with
ψr = ψ

(−1/2)
r in (106), just by adding up the charges from

their constituents, the following u(1) and ũ(1) charges [q, q̃]
for the bound states χ:

(

χ(−)ã

χ(+)ã

)

∼

(
[

0,− 12
]

[

−1, 12
]

)

,

(

χ
(−)ã
a

χ
(+)ã
a

)

∼

(
[

2
3 ,−

1
2

]

[

− 13 ,
1
2

]

)

.

(108)

We see that we obtain in the first doublet (of s̃u(2)) exactly
the right u(1) charges for the leptons (ν, e−), and for the
second doublet those for the quarks (u, d).
What is new, however, is that the leptons and quarks

have now acquired, in addition to flavour, a charge q̃ for
the global ũ(1) as well as an index ã referring to the global
s̃u(3) symmetry. As already indicated in the introduction,
assumption (C), we would associate the s̃u(3) symmetry
with fermion generations, a theme which we shall develop
further in the rest of the present paper. For the moment, let
us first ask what is the physical meaning, if any, of the ũ(1)
symmetry and charge.
The theory having been constructed to be invariant

under both u(1) and ũ(1) by virtue of the framon hypoth-
esis, it follows that both the u(1) charge q and the ũ(1)
charge q̃ are conserved quantities. This ought then to im-
ply another conserved quantity in addition to the electric
charge q. However, when applied to framons where the ũ(1)
charge originates, it gives nothing new, since q̃ in this case
is always equal in magnitude and opposite in sign to the
electric charge q, so that the conservation of one necessar-
ily implies the conservation of the other. But such a situ-
ation will not in general be maintained when applied to
compound particles formed from framons with other fields,
which carry only the charge q, not the charge q̃. An exam-
ination of (92), however, shows that for the boson states
H,W±, and γ–Z, the condition q̃ =−q still obtains so that
again no new conserved quantity appears. This is because
these boson states are formed from a framon–antiframon
pair, some with a gauge boson Bµ, which carries neither
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charge. But with leptons and quarks formed from a funda-
mental charged fermion with a single framon field, the con-
dition q̃ =−q no longer applies. Instead, as seen in (108),
the value of q̃ is shifted from −q as follows:

q̃ =−q+
1

2
(B−L) , (109)

where the special amount of the shift can be traced eventu-
ally to the charge assignments to the fundamental fermion
fields, which in turn arise from the choice of U(1, 2, 3) as
gauge group. That being the case, the conservation of both
q and q̃ as required by the theory now implies not just the
conservation of the electric charge q but also the conserva-
tion of the baryon–lepton number B−L.
It thus seems that the new global ũ(1) invariance ob-

tained through implementing the framon idea has indeed
a physical meaning, and a rather important one, namely
baryon–lepton number conservation. Now baryon number
conservation, or in its modern form as B−L conservation,
is a mystery which has puzzled us particle physicists for
some time. As long ago as the 1950’s, Lee and Yang [14]
already asked the searching question why we knew of no
gauge invariance principle which implies baryon number
conservation, although it is one of the best kept conserva-
tion laws known in nature. It is thus very interesting that
the framon idea under consideration provides now an an-
swer for it. In the framon scheme, baryon number (orB−L
in modern terms) is “dual” to the electric charge in a simi-
lar sense as flavour s̃u(2) is “dual” to the confining local
gauge symmetry su(2), or, as generations are “dual” to
su(3) colour, as we hope next to show.
As already noted, the compound fields χ in (107) carry

also an ã index acquired from their framon constituents,
which means in physical terms that our left-handed leptons
and quarks should each exist in s̃u(3) (anti-) triplets. Since
the theory is invariant under s̃u(3), one would need in any
case to account for the existence of this multiplet structure
as one did for the ũ(1) charge. It seems thus natural to try
associating it with fermion generations, for which there has
been wanting a plausible explanation already for decades.
To see whether such a supposition might work, let us

try first to construct Yukawa couplings for the fermions
in (103) with the “weak” framon fields. In analogy to the
standard electroweak theory, we suggest the following:

AYK =
∑

[ã][b]

Y lepton[b] ψ̄r[ã]φ
(−)ã
r

1

2
(1+γ5)ψ

[b]

+
∑

[ã][b]

Y ′lepton[b] ψ̄r[ã]φ
(+)ã
r

1

2
(1+γ5)ψ

′[b]+h.c.

(110)

for leptons, and

AYK =
∑

[ã][b]

Y quark[b] ψ̄ra[ã]φ
(−)ã
r

1

2
(1+γ5)ψ

[b]
a

+
∑

[ã][b]

Y ′quark[b] ψ̄ra[ã]φ
(+)ã
r

1

2
(1+γ5)ψ

′[b]
a +h.c.

(111)

for quarks, where the indices in brackets [ã] and [b] label
just three identical copies of the same fields. These expres-
sions are by construction invariant under Lorentz trans-
formations and the internal symmetries su(2) and su(3).
Invariance under s̃u(2) can be seen by recalling from (16)

the expressions of φ
(±)
r as the inner products α(±) ·φr

between two s̃u(2) vectors. What remains to be checked
is then just the invariance with respect to u(1), ũ(1) and
s̃u(3). Invariance under u(1) can be guaranteed by assign-
ing appropriate u(1) charges to the right-handed fields,

thus q = 0 for ψ[b], q =−1 for ψ′[b], q = 2/3 for ψ[b]a , and
q = −1/3 for ψ′[b]a , namely the same charges as the cor-
responding compound state χ in each case. This proced-
ure is the same as in the conventional formulation of the
standard model. We only need to check here that these
charge assignments to the right-handed fields are consis-
tent with those allowed by the gauge group U(1, 2, 3) as
listed in (10), and one sees that they are. Similarly, ũ(1)
invariance can be ensured also by assigning to the right-
handed fields the same ũ(1) charges q̃ as their correspond-
ing compound states. This contravenes in principle our rule
that fundamental fermions should not carry global charges
or indices. This is however just a matter of convenience, for
these charges being global can equally be absorbed into the
Yukawa couplings Y[b] etc. We follow the standard conven-
tion and assign the ũ(1) charge to the right-handed field,
so that they carry the same baryon and lepton number
as their left-handed partners and so guarantee ũ(1) in-
variance. There remains then only s̃u(3) invariance, which,
strictly speaking, (110) and (111) do not have. Under an
s̃u(3) transformation, the framons φ transform, but the
left-handed fermions ψ[ã] with which the ã index of the fra-
mons are contracted do not transform. However, if we force
a transformation on these latter fields, it would mean only
a relabelling of these identical fields, and physics should
not be affected. Thus s̃u(3) invariance is maintained in
this more specialised sense. This is similar to the argu-
ment used below, by relabelling the right-handed fields, to
cast the fermion mass matrix into a hermitian form often
found useful in the usual standard model. We thus pro-
pose to accept the above Yukawa couplings as valid on this
basis.
Suppose we do, then; on substituting the vacuum ex-

pectation value ζW of the weak framon field into the
Yukawa couplings above, one obtains mass matrices of the
form

m∼

⎛

⎝

α1̃

α2̃

α3̃

⎞

⎠ (Y[1], Y[2], Y[3])
1

2
(1+γ5)

+

⎛

⎝

Y ∗[1]
Y ∗[2]
Y ∗[3]

⎞

⎠

(

α1̃∗, α2̃∗, α3̃∗
) 1

2
(1−γ5) . (112)

Equivalently, by relabelling the right-handed fields appro-
priately, we can recast the mass matrix in a Hermitian form
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with no γ5 [15]:

m=mT

⎛

⎝

α1̃

α2̃

α3̃

⎞

⎠ (α1̃∗, α2̃∗, α3̃∗) . (113)

In other words, we find that the mass matrix of all quarks
and leptons are similar, being just a product of the same
vector α in generation space by its Hermitian conjugate,
and they differ for different fermion species, i.e. whether
lepton or quark or whether flavour up or down, only by the
normalisation:

mT = ζWρ
2
T , (114)

with

ρ2T = |Y[1]|
2+ |Y[2]|

2+ |Y[3]|
2 . (115)

This form for the fermion mass matrix plays a very signifi-
cant role in our understanding of the fermion mass hierar-
chy and mixing pattern observed in experiment, a theme
that will be taken up again in the next section.
Before we do so, let us first make a necessary detour

to consider the soft hadron scenario where colour su(3) as
well confines. As remarked before, we are not at present
interested in details of the hadronic spectrum and will
not therefore examine in general terms the many fermion
states that are obtained by confining via colour the fun-
damental fermion fields introduced above with the scalar
framon fields. We shall only, for a reason that will be made
clear later, work out a special case as example. For our
purpose, it will be sufficient to consider the (hadronic)
fermion states obtained by confining ψa via colour con-
finement with the “strong” framon from which we shall
even omit the r̃ index as being here inessential and write
it as φãa.
Our first task is to construct a Yukawa coupling term

for ψa with φ
ã
a. We notice that whereas the framon field

carries an ã index for s̃u(3), the fermion fields do not. To
maintain s̃u(3) invariance, therefore, we need here a vector
in s̃u(3) space to saturate this ã index. As noted already
in [1], there is no such vector available to play this role
within the purely strong sector. But in the present set-
up, there is the vector α coming from the weak sector,
which can possibly be so employed. In thus introducing
a vector originating from the weak sector so as to con-
struct a Yukawa term in the strong sector, one is imitat-
ing, in spirit though not in detail, the previous construc-
tion of the Yukawa terms in the weak sector, see (110)
and (111), by means of the s̃u(2) vectors α(±) originat-
ing from the electromagnetic u(1) sector so as to guaran-
tee s̃u(2) invariance, and in that case, one obtained the
standard electroweak theory result. The vector α, how-
ever, does not have a definite value but, the vacuum be-
ing degenerate as asserted previously, can point in any
direction in s̃u(3) space. Nevertheless, these directions be-
ing all gauge equivalent, it should not matter which par-
ticular value we choose. Let us then just select an arbi-
trary direction, say α0, and construct our Yukawa term as

follows:

AYK =
∑

[b]

Z[b]ψ̄
aφa ·α0

1

2
(1+γ5)ψ

[b]+h.c. , (116)

where ψ[b], b = 1, 2, 3 are again just three copies of right-
handed fields. This has then all the invariance properties
that are required and seems to be the only Yukawa term
with these properties that one can construct in the strong
sector from the quantities so far introduced. What the cho-
sen value for α0 represents will become clear later as the
formalism develops.
Again, for consequences of such a Yukawa term, be-

cause of the distortion of the strong framon vacuum from
orthonormality, to work it out is a little complicated, and
this will be done here in detail only for the 2-G model. In
that case, for any α0 that we may have chosen, the theory
being invariant under s̃u(2), we can always choose to work
in the gauge whereα0 points in the up direction and is real,
thus

α0 =

(

1
0

)

. (117)

Further, the theory being also invariant locally under
su(2), we can also choose to work in the local su(2) gauge
in which the vacuum value for the framon field Φ corres-
ponding to thisα0 is triangular, which in this case actually
means diagonal, as given in (74) above. We shall refer
henceforth to this chosen gauge as the T0 gauge.
Our next task is to evaluate the mass matrix for the

fermion states formed from ψa and φ
ã
a by colour confine-

ment. As for the leptons and quarks in the weak sector,
the mass matrix for these is obtained by substituting for
Φ in the Yukawa term its vacuum value. For the general
vacuum labelled by α, the vacuum value for Φ is given al-
ready in (40), with δ and ∆ given in terms of α in (52).
This is, however, in the su(2) gauge, say the T gauge, where
the vacuum value of Φ is triangular, and this gauge changes
from vacuum to vacuum labelled by different values of α.
In what follows we shall be interested in comparing the
mass matrix, and hence the vacuum values of Φ at different
α, and this will make sense only if we keep the same gauge,
let us say the T0 gauge defined above. The value of Φ at
the vacuum labelled by α in the T0 gauge can be obtained
either by operating from the left on (40) with Θ−1 for Θ
in (78), changing thus from the original T gauge to the T0
gauge we prefer, or else by operating from the right on (74)
with A−1 for A in (75), i.e. translating the vacuum value
at the reference point α0 to the general point α. In either
case, one obtains for the vacuum value of Φ at α the result
(77), which we rewrite here again for future convenience,

V0(α) = ΦVAC
(

α0
)

A−1

=

⎛

⎝

√

1+R
2 cosαe

iβ
√

1+R
2 sinαe

iγ

−
√

1−R
2 sinαe

−iγ
√

1−R
2 cosαe

−iβ

⎞

⎠ .

(118)

Substituting the vacuum value (118) of Φ into (116),
one obtains then for the fermion bound states via su(2)
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(2-G colour) confinement formed from ψa with φ
ã
a the mass

matrix:

m= ζS

{

(V0α0)(Z[1], Z[2])
1

2
(1+γ5)

+

(

Z∗[1]
Z∗[2]

)

(V0α0)
† 1

2
(1−γ5)

}

, (119)

where we have used a bold-faced letter m to remind our-
selves that we are dealing here with hadron states and to
distinguish it from the mass matrixm introduced above for
leptons and quarks. Also, to simplify the notation, we have
omitted from V0 its argument, leaving its dependence on α
understood, as we shall do as well for related quantities in
the future. Again, as was done before for (112), by appro-
priately relabelling the right-handed singlet fermions ψ[b],
we can rewritem in the Hermitian form independent of γ5
as

m=mT|v0〉〈v0| , (120)

with

|v0〉= V0α0 . (121)

Explicitly,

mT = ζSρS; ρS =
√

|Z[1]|2+ |Z[2]|2 , (122)

and

|v0〉=

⎛

⎝

√

1+R
2 cosαe

iβ

−
√

1−R
2 sinαe

−iγ

⎞

⎠ . (123)

For our future use, we need also to derive the couplings
of these bound state fermions to the Higgs bosons listed in
the preceding section. These couplings are obtained by ex-
panding the Yukawa coupling term (116) to first order in
the fluctuations of the framon fields about their vacuum
values. With right-handed fermions labelled as in (120),
these couplings for the fluctuations δφãa are easily seen to
be given just as

Γ ãaR = ρS|v〉〈v0|
1

2
(1+γ5)+ρS|v0〉〈v|

1

2
(1−γ5) ,

Γ ãaI = iρS|v〉〈v0|
1

2
(1+γ5)− iρS|v0〉〈v|

1

2
(1−γ5) ,

(124)

with

|v〉= Vα0 , (V )
b̃
b = δabδ

ãb̃ . (125)

What we need, however, are the couplings for the Higgs
states H1, H2, HR and HI identified in the preceding sec-
tion. These were given as linear combinations of the δφãa
in (97) in terms of the matrices ̂VK . But these were in the
T gauge, which we have first to transform back into the
selected T0 gauge, thus:

VK =Θ
−1
̂VK . (126)

The corresponding coupling of the Kth Higgs state to the
fermion states is then given by

ΓK = ρS|vK〉〈v0|
1

2
(1+γ5)+ρS|v0〉〈vK |

1

2
(1−γ5) , (127)

forK = 1, 2,R, I, where for the VK listed in (126) we have

|v1〉= V1α0 =

(

cos θeiβ

− sin θe−iγ

)

,

|v2〉= V2α0

=
1

√

x2 cos2 δ+y2

(

−x2 sin θ sin δ cos δeiβ

−x2 cos θ sin δ cos δe−iγ

)

,

|vR〉= VRα0 =
1

√

x2 cos2 δ+y2

(

y sin θeiβ

y cos θe−iγ

)

,

|vI〉= VIα0 = i

(

(−x cos θ sin δ−y sin θ)eiβ

(x sin θ sin δ−y cos θ)e−iγ

)

. (128)

There is no difficulty of principle extending the above
considerations to the actual 3-G situation. For the present,
however, since the solution for the vacuum has only been
found to leading order in the supposedly small parameter
R, and the gauge relationship between them only worked
out for a special class of s̃u(3) transformationsA, the same
restrictions remain in what follows. Apart from these re-
strictions, (120) and (121) for the mass matrix of the anal-
ogous bound state remain essentially the same, only with
the matrix V0 being now the 3-G version given in (86).
The couplings of these fermion bound states to the Higgs
fields also remain basically the same as in (127) although
notation-wise we find it convenient to distinguish the three
types of HiggsK = k, kR, kI, k = 1, 2, 3, thus:

Γk = ρS|vk〉〈v0|
1

2
(1+γ5)+ρS|v0〉〈vk|

1

2
(1−γ5) ,

(129)

ΓRk = ρS|w
R
k 〉〈v0|

1

2
(1+γ5)+ρS|v0〉〈w

R
k |
1

2
(1−γ5) ,

(130)

Γ Ik = ρS|w
I
k〉〈v0|

1

2
(1+γ5)+ρS|v0〉〈w

I
k|
1

2
(1−γ5) ,

(131)

where

|vk〉=Θ
−1
̂Vkα0 , |wRk 〉=Θ

−1
̂WRk α0 ,

|wIk〉=Θ
−1
̂W Ikα0 , (132)

for ̂Vk,̂W
R
k and

̂W Ik as listed in (102). The resulting formu-
lae for these vectors are a little complicated even to first
order in R. Since the algebra is straightforward, we shall
give the answer here only for |v0〉:

|v0〉=

⎛

⎜

⎜

⎜

⎝

√

1+2R
3 c2c3e

iβ1

−
√

1−R
3 s3e

i(β1+σ3)

−
√

1−R
3 s2c3e

−i(β2+β3+σ3)

⎞

⎟

⎟

⎟

⎠

, (133)
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which is just the first column of the matrix V0 in (86) and
will be of use later.

7 The rotating fermion mass matrix

By a rotating mass matrix here we mean one that changes
its orientation in generation space with changing scale, in
much the same way as a running coupling changes with
changing scale its value. A coupling changes with scale be-
cause of renormalisation effects; so in the same way a mass
matrix may change its orientation in generation space. It
is in fact quite easy to imagine or construct situations in
which it does do so.
The reason we are interested in a rotating fermion mass

matrix is that it has been suggested that this may lead to
mass hierarchy and mixing patterns for fermions similar to
what have been observed in experiment. Indeed, one can
even claim there is circumstantial evidence that the ob-
servedmass andmixing patterns for leptons and quarks are
due to a rotating fermion mass matrix [16]. Furthermore,
a phenomenological model (DSM) has been constructed
that gives a good description of these phenomena, includ-
ing in particular neutrino oscillations, depending on only
a small number of parameters [4, 7].
Starting anew from more considered premises, we have

now constructed, a much more theoretically attractive
and internally consistent model. We naturally wish to ask
whether in this new model the fermion mass matrix will
still rotate and give rise to a similar explanation for the
mass and mixing patterns. At first sight, this might seem
difficult, since the fermions we are interested in are the lep-
tons and quarks that have rather little structure in our new
model, being bound states via the deeply confining su(2)
symmetry, and they should appear at present experimental
conditions as approximate point particles. Although they
are made to carry a generation index in view of the weak
framon field, which is one of their constituents and which
carries this index, this index is only global and brings with
it no new interactions. Indeed, this is in a sense fortunate,
for one would not want, and probably cannot admit, any
blatant new interactions for leptons and quarks, for these
may spoil the already good description of these particles
by the standard model. For this reason, in the lepton and
quark mass matrix given in (113), the generation index ap-
peared only in the global factor α, which has no explicit
coupling to any gauge field.
However, the interesting thing is that this vector α is

coupled nevertheless to the strong sector via the framon
potential constructed to satisfy the symmetries intrinsic
to the system. Indeed, as shown above in Sect. 4, the vac-
uum of the framon potential is degenerate and depends
on the direction of α, so that if the vacuum moves from
one value to another within the degenerate set, which it
can do under renormalisation effects in the strong sec-
tor, then α can change in direction, i.e. in other words,
rotate. The attention is then shifted to the behaviour of
the vacuum under renormalisation, which we shall now
study.

The vacuum value of the framon field Φ, as we no-
ticed above, occurs in the mass matrix m for the hadron
bound state in (120) via (121). We can thus obtain in-
formation on the change in value of the vacuum value of
Φ, and hence on the rotation of α, by studying the be-
haviour ofm in (120) under renormalisation. Now a similar
problem has been studied before in the phenomenological
model DSM [8], where it was found that the rotation, if
any, would come mostly from insertions of Higgs loops in
the fermion propagator (i.e. for the hadronic bound state
fermions, in the present language), the effect of other loops
being suppressed. It is for this reason that we have worked
out above in some detail the spectra of these fermion and
Higgs bound states as well as their couplings. With these
results, we can now calculate the effect of Higgs loop inser-
tions, which we shall do below to 1-loop order.
The insertion of a Higgs loop to the fermion self-energy

is of the form

Σ(p) =
i

(4π)4

∑

K

∫

d4k
1

k2−M2K
ΓK
(p/−k/)+m

(p−k)2−m2
ΓK ,

(134)

where we may for the moment take K to label the Higgs
mass eigenstates. After standard manipulations, regular-
izing the divergence by dimensional regularisation, one
obtains

Σ(p)

=−
1

16π2

∑

K

∫ 1

0

dxΓK{C̄− ln(Q
2/µ2)}[p/(1−x)+m]ΓK,

(135)

where

Q2 =m2x+M2K(1−x)−p
2x(1−x) , (136)

with C̄ being the divergent constant to be subtracted in
the standard MS scheme. The renormalisation to the mass
matrix δm is obtained by first commuting the p/ in the nu-
merator half to the extreme left and half to the extreme
right, then putting p/ =m and p2 =m2. The full explicit ex-
pression for δm so obtained together with more details of
the calculation can be found in [17]. Here, we are interested
only in the terms dependent on the scale µ. These are of
two types. First, there are terms of the form

ΓKmΓK = ρ
2
S〈v0|v0〉〈v0|vK〉|vK〉〈v0|

1

2
(1+γ5)+c.c.

(137)

Then there are terms of the form

ΓKp/ΓK →
1

2
ρ2S{〈v0|v0〉〈vK |v0〉|vK〉〈v0|

+ 〈v0|v0〉〈vK |vK〉|v0〉〈v0|}
1

2
(1+γ5)+c.c.

(138)

In (137) and (138), we have already commuted p/ to the left
and right as stipulated and used the known forms for the
tree-level mass matrix (120) and Higgs couplings (127).
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We notice that the second term in (138) is propor-
tional to the tree-level mass matrix (120) and will thus only
change its normalisation, not its orientation. Any rotation
will thus have to come from the other terms, either of which
will add a correction of the form

∑

K

〈v0|vK〉|vK〉 , (139)

or
∑

K

〈vK |v0〉|vK〉 , (140)

to the vector |v0〉 on the left, andwill change the orientation
of the mass matrix, provided of course that these correc-
tions are neither vanishing nor parallel to |v0〉 itself. For this
reason, we call (139) and (140) the governing vectors for ro-
tation, and it is on these that our attention is turned.
Again, to avoid getting bogged down by algebraic com-

plications too soon, we shall work out first the governing
vectors in the 2-G model. We recall that the index K is
meant here to label the Higgs mass eigenstates, which is
not the same as in (128). This presents no difficulty in
principle, for we had the Higgs mass matrix in (99), which
if necessary can be diagonalised to give the mass eigen-
states as orthogonal transforms of the vectors in (98), from
which eigenstates, the corresponding |vK〉 can be recalcu-
lated. However, this will not be necessary, since an orth-
ogonal transformation among the vectors VK will leave the
governing vectors invariant. We can thus evaluate the gov-
erning vectors with just the old set of |vK〉 in (128). The
answer is as follows. First, we notice by (80) or (81) that
both |v2〉 and |vR〉 are orthogonal to |v0〉, giving thus no
contributions, while |v1〉 is parallel to |v0〉. Hence, sum-
ming over the “real”K, we have
∑

K=1,2,R

〈v0|vK〉|vK〉=
∑

K=1,2,R

〈vK |v0〉|vK〉= |v0〉 . (141)

This means that the “real” states will give no rotation
to the mass matrix. The “imaginary” state K = I, on the
other hand, gives the following contribution:

|gvI〉= 〈v0|vI〉|vI〉=−〈vI|v0〉|vI〉

=−
1

2
R sin 2α

⎛

⎝

√

1+R
2 sinαe

iβ

√

1−R
2 cosαe

−iγ

⎞

⎠ , (142)

where we have used (80) and (52) to simplify the expression
to the given form. This being in general neither vanishing
nor parallel to |v0〉, we conclude that in the 2-G case, the
vector |v0〉will indeed in general rotate with changing scale
as we hoped, and that by Sect. 4 above it will drag the vec-
tor α along with it.
Indeed, substituting the result (142) into (135), one ob-

tains the following renormalisation group equation for the
rotating vector |v0〉:

d

d(lnµ2)
|v0〉=−

3

64π2
ρ2S|gvI〉 , (143)

where one has neglected terms that change only the nor-
malisation of the vector, which is not of immediate inter-

est here. The equation makes the rotation effect with re-
spect to scale change explicit. In particular, one notes that
at α = nπ/2, the governing vector vanishes. This means
that these are fixed points of the rotation, which will be
of special significance later when practical applications to
fermion mixing are considered.
To visualise more easily the behaviour of the rotating

vectors between fixed points, let us simplify the equation
by taking the leading order in an expansion in the suppos-
edly small parameter R, in which case we have

|gvI〉 ∼ −
1

2
R sin 2α

(

sinαeiβ

cosαe−iγ

)

, (144)

of first order in smallness and orthogonal to |v0〉. Sup-
pose we start with α in the first quadrant, i.e. 0 < α <
π/2, which gives, according to (121), a |v0〉 in the fourth
quadrant. Then, according to the rotation equation (143)
and (144) for |gvI〉, a change in the scale µ by a positive
amount will give a vector increment to |v0〉 pointing back
in the first quadrant. This means that for increasing µ,
|v0〉 will rotate in the counterclockwise direction, or that
α will rotate in the clockwise direction. Hence, on increas-
ing µ further, α will eventually reach the limiting value
0, or α the limiting value α0 = (1, 0), which we have al-
ready noted to be a rotational fixed point. Recalling here
that α0 was the arbitrary value of α that we had chosen
to construct our Yukawa term (116), we now realise what
it represents, namely the high scale limit of α, i.e. when
µ→∞. Conversely, for decreasing µ, α will rotate in the
counterclockwise direction reaching eventually at µ= 0 the
fixed point at α= π/2, i.e. α= (0, 1).
These results are easily generalised. For example, had

we started with an α pointing in the fourth quadrant, i.e.
−π/2< α < 0, then α will rotate clockwise for increasing
µ, so that α= (1, 0) will remain the high scale fixed point,
but α will reach eventually instead at µ= 0 the fixed point
at α=−π/2 orα= (0,−1). Furthermore, given the intrin-
sic s̃u(2) invariance of the system, it is clear that the choice
of the starting point α0 has no particular meaning. One
could have started with any other choice for α0 to con-
struct the Yukawa coupling, for which α0 will then play
the role of the high scale fixed point, and α will rotate for
decreasing µ, in either direction depending on the initial
condition for a quarter circle till it reaches the low scale
fixed point at µ= 0.
The same analysis can be carried out for the actual 3-G

case using the Higgs states listed in (102). This can and has
been done at present to leading order in R and for the spe-
cial class of vacua defined byA of (85). Again, as in the 2-G
case, one finds that all the “real” states |vi〉 and |wRi 〉 are
orthogonal to |v0〉, except for |v1〉, which is parallel, so that
their total contribution to the governing vector is just

∑

i

〈v0|vi〉|vi〉+
∑

i

〈v0|w
R
i 〉|w

R
i 〉

=
∑

i

〈vi|v0〉|vi〉+
∑

i

〈wRi |v0〉|w
R
i 〉= |v0〉 ,

(145)
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thus giving no rotation. On the other hand, one has from
the “imaginary” states

∑

i

〈v0|w
I
i〉|w

I
i〉=−

∑

i

〈wIi |v0〉|w
I
i〉= |gvI〉 , (146)

with

|gvI〉=−

√
3

4
R sin 2θ

⎛

⎜

⎜

⎝

sin θeiβ1
cos θ sinφ√
1−sin2 θ cos2 φ

ei(β1+σ3)

cosφ cos2 θ√
1−sin2 θ cos2 φ

e−i(β2+β3+σ3)

⎞

⎟

⎟

⎠

.

(147)

Again, this being neither parallel nor orthogonal to |v0〉,
there will in general be rotation, except when sin 2θ = 0,
where the rotation vanishes and we have again rotational
fixed points.
We shall leave the detailed analysis of the rotation for

the 3-G case for later when the calculation has been made
more complete. We note only that in restricting A only to
the form (85), we have thrown away a phase which could
be important for the understanding of CP -violation in the
mixing of quarks and leptons, which has so far not made
its appearance. However, this is only a matter of algebraic
complications, which we need to sort out in the near future.
Given the rather significant role that the rotating

fermion mass matrix will play in what follows, it would
seem worthwhile to give here a brief resumé of the man-
ner it arises in the present framework, which is surprisingly
intricate, involving, as it does, the doubled invariance in-
troduced by the framon idea in an essential way as well
as a delicate interplay between the electroweak and strong
sectors of the theory. The mass matrix here being of the
factorised form (113), its rotation is encapsulated in the ro-
tation of the vector α. This last is a vector in s̃u(3) space
and originates in the weak framon φãr̃r of (11), having at
first nothing to do with the fundamental fermions (103).
It only got attached to the left-handed bound fermion
states χãr̃ and χãr̃a of (106) and (107) through their fra-
mon constituents, and so it appears in the fermion mass
matrix (113). This vector α, carrying only the global s̃u(3)
index, has by itself no gauge interaction to give it rotation,
but by virtue of its coupling to the strong sector via the
linkage ν2 term in the framon potential (35), it feels the ef-
fects of strong dynamics. In passing, we note that this ν2
term in the framon potential was not introduced by fiat but
is a consequence of the doubled invariance intrinsic to the
framon idea. Apart from coupling α to the strong sector,
this same ν2 term also distorts the strong framon vacuum
from its original simple configuration of an orthonormal
triad to a configuration in which deviations from both or-
thogonality and normality appear. The vacuum becomes
degenerate under these distortions with deviations from
orthogonality traded off with deviations from normality.
And the vector α is coupled to the strong sector in such
a way that as the vacuum moves among the degenerate
set, the vector αmoves (rotates) with it. That the vacuum
does indeed move, or that the vector α does indeed rotate,
was finally ascertained by studying the renormalisation ef-
fects to 1-loop order on the (hadron) fermion self-energy.

Even in this, the interplay between the electroweak and
strong sectors plays an essential role, for without the vec-
tor α coming from the electroweak sector, one finds that
one cannot even construct a Yukawa term for the (hadron)
fermion, which is s̃u(3) invariant as required. Indeed, as
noted in [1], treating just the strong sector by itself, even
after implementing the framon idea, one still would not
obtain any rotation. Only treating the electroweak and
strong sectors together as in the present framework and
implementing then the framon structure will one find that
rotation of the fermion mass matrix results. It would thus
seem that the rotation of the fermion mass matrix here is
a consequence of the present framework produced from its
very depths.

8 Fermion mixing and mass hierarchy

In a nutshell, that fermion mixing and mass hierarchy
would result from a rotating fermion mass matrix can be
seen as follows. A mass matrix of the simple form (113)
of a product of a vector α with its Hermitian conjugate,
which depends on the fermion species only through its nor-
malisation mT, means of course that at any chosen value
of the scale µ there is only one eigenvector with non-zero
eigenvalue, namely α with eigenvalue mT, and that this
vector, though not its eigenvalue, is the same for all fermion
species. However, the masses and state vectors of the phys-
ical particles are not measured all at the same scale. In-
deed, the normal convention is to measure these quantities
each at the scale equal to the particle mass itself. Thus,
for example, the state vectors of the t and b quarks are
to be taken respectively at µ=mt and µ=mb, and being
the heaviest state each in its own species, they are to be
identified as the eigenstate of m with non-zero eigenvalue,
namelyα, but one at µ=mt and the other at µ=mb; thus
we have

vt =α(µ=mt) , vb =α(µ=mb) . (148)

Since the scales differ, however, andα rotates with scale, it
follows that vt and vb will no longer be aligned, or that the
CKMmatrix element is

Vtb = v
∗
t ·vb �= 1 . (149)

Hence there occurs mixing between the U and D states.
Further, the c quark, being an independent quantum state
to t, must have a state vector vc orthogonal to vt. This
means that at the scale µ=mt, where vt is defined as the
only eigenstate of m with non-zero eigenvalue, vc must be
an eigenstate of m with a zero eigenvalue. But this is not
the mass mc of the c quark, which is to be measured in-
stead at the scale µ =mc, at which scale the eigenvector
α with the non-zero eigenvalue would have rotated already
to a different direction and no longer be orthogonal to the
state vc. At µ =mc, therefore, vc can no longer be an
eigenvector with zero eigenvalue but, having now a com-
ponent in the direction of the massive state α, would have
acquired a non-zeromass, as if by “leakage” from the heavy



658 H.-M. Chan, S.T. Tsou: A model behind the standard model

state. Hence we have the mass hierarchy. Details for work-
ing out mixing matrices and lower generation masses from
a given rotating mass matrix can be found in [4, 5, 7, 8]
in the context of our ealier phenomenological model, the
DSM, or in a general context, and thus more lucid lan-
guage, in a recent note [20].
That a rotating fermion mass matrix can give a reason-

able description of the fermion mass hierarchy and of the
mixing phenomena including the neutrino oscillations ob-
served in experiment has been demonstrated in a number of
earlier articles [4, 7]. Indeed, it can evenbe said that the data
already give circumstantial evidence for mass matrix rota-
tion [16]. Further, an explicitmodel (DSM)was constructed
that was able to reproducemostmass ratios andmixing an-
gles towithin present experimental errors starting from just
a small number of fitted parameters. However, it was noted
in [7], based on the experience gained from the fits, that the
details of themodel are not so crucial, but that othermodels
with a rotating mass matrix of the form (113) with rota-
tional fixedpoints atµ= 0andµ=∞, and a fewparameters
to adjust, may quite likely do as well.
Very briefly, this can be seen as follows. In the picture

with a rotating mass matrix outlined at the beginning of
this section, both the masses of lower generation fermions
and the mixing between up and down fermion states arise
from the rotation. Hence, the slower the rotation with re-
spect to the change of scale, the smaller will also be the
resultant effects. Now suppose that given a model with the
stated properties, one is able to choose its parameters so
as to have the heavy fermions, such as t and b, close to the
high energy fixed point at µ =∞ and the very light neu-
trinos close to the low energy fixed point at µ = 0, while
the remaining fermions with intermediate masses lie some-
where in between where the rotation is faster; then, apart
from the general features of up–down mixing and the mass
hierarchy already noted, the following empirical facts will
automatically result.

(i) One has mc/mt <ms/mb <mµ/mτ by virtue of the
relative proximity of t, b, τ in that order to the high
energy fixed point, so that the “leakage” of masses to
the lower generation c, s, µ is increasing in that order.

(ii) The mixing between quarks is considerably smaller
than that between leptons, by virtue of the heavier
masses of the quarks, which place them closer to the
high energy fixed point than the leptons.

(iii) The corner elements of the mixing matrices, i.e. Vub
and Vtd in the CKM matrix for the quarks, and Ue3
in the MNS matrix for the leptons, are much smaller
than the other elements, by virtue of the geometrical
fact that the corner elements are associated with the
torsion but the others with the curvature of the rota-
tion trajectory traced out by α through the changing
scale [18].

(iv) The element Uµ3, which governs the oscillation of at-
mospheric neutrinos, is near maximal by virtue of the
neutrinos close proximity to the low energy fixed point
at µ= 0.

These alreadyencompassmost salient featuresof the fermion
mass andmixing patterns known experimentally today.

Furthermore, a scheme in which lower generation
fermion masses are obtained by “leakage” via a rotat-
ing factorisable mass matrix is attractive because of the
following added virtue. Since the mass matrix remains fac-
torisable at all scales, it has always some zero eigenvalues,
although the actual fermion masses are non-zero, which
means that the QCD phase angle θ can be rotated away
and the strong CP problem avoided [20].
Now, the present framework considerably differs from

the old DSM in its starting premises and in all its structural
details. Nevertheless it has surprisingly retained similar-
ity with DSM as regards precisely those properties noted
above as relevant for deriving the physical effects in order.
First, it has a degenerate vacuum depending on the orien-
tation, as DSM had, which is the initial condition needed
for rotation to take place. Then it is found to give quark
and lepton mass matrices of the required factorised form,
which rotate as the scale changes, and it is found that
this rotation has a fixed point at µ = 0 and another one
at µ=∞. It seems thus quite probable, judging from past
experience, that the present framework will give (or can
be made to give by appropriate adjustments of the pa-
rameters) similar agreement with experiment as DSM did,
although whether this will indeed be the case has yet to be
demonstrated by explicit calculations.
Assuming optimistically for the moment that this will

turn out to be the case, let us examine what we have gained
with the present framework in comparison with the old
DSM [4, 7]. First, we have improved on the theoretical ba-
sis. The DSM was a phenomenological model constructed
for the explicit purpose of understanding the generation
phenomenon without too high a demand for theoretical
consistency, and some of the assumptions made were a lit-
tle ad hoc. In the present framework, on the other hand,
we have chosen to start with just a few main assumptions,
and then to work systematically through the consequences
to their logical conclusion. Thus, while the present frame-
work has room for the hope to be developed into a theory,
the DSM would have to remain a phenomenological model.
Secondly, there have been major improvements too on

specific points, both in principle and in practice. We list
in particular the following ones, which serve also to high-
light some intricate features of the present model we find
attractive.
(a) One outstanding weakness of the old DSM is that

the electroweak symmetry u(1)× su(2) has never been
properly incorporated. In the present framework, not only
is the electroweak symmetry fully incorporated, but it is
treated according to the same general principles as su(3),
the other local gauge symmetry. Thus all the local sym-
metries, u(1), su(2) and su(3), are taken to remain ex-
act, and both non-abelian symmetries to be confining, and
all are associated through the framon idea with each a
“dual” global symmetry, i.e. ũ(1), s̃u(2) and s̃u(3). While
the global abelian symmetry ũ(1) remains exact and gives
rise to baryon–lepton conservation as a bonus, the non-
abelian global symmetries are both broken. The breaking
is different for s̃u(2) and s̃u(3), but this difference is not
imposed by fiat but arises as a consequence of the differ-
ence in structure between su(2) and su(3), which allows
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the framons of su(2) to satisfy the stronger unitarity con-
straint (4) than that admissible for su(3) framons. This
forces the “weak” framons φr̃, r̃= 1, 2, in su(2) to have op-
posite u(1) charges, hence breaking by their different u(1)
gauge interactions the s̃u(2) invariance. The “strong” fra-
mons, on the other hand, have all the same u(1) charge.
Hence, in contrast, u(1) gauge interaction does not break
s̃u(3) invariance. What breaks s̃u(3) invariance instead is
the linkage term ν2 in the framon potential via the vectorα
originating in su(2). One sees thus that it is ultimately the
difference in basic structure of the two symmetries su(2)
and su(3), and not the manner they are treated, which is
responsible for the difference in physical outcome between
the two cases.
(b) A second weakness of the old DSM is that the self-

interaction potential of scalar fields is not unique. That po-
tential was constructed on the basis of an assumed permu-
tation symmetry between the frame vector fields, which,
though not unreasonable, is essentially phenomenological
and ad hoc. Even then, the potential there is not the only
one that can be constructed with this symmetry. In con-
trast, the framon potential (28) of the present scheme is
constructed on the basis of the doubled invariance under
both the original local gauge symmetries u(1)× su(2)×
su(3) and their associated global symmetries ũ(1)× s̃u(2)×
s̃u(3), an invariance embedded already in the framon idea.
It is also the only potential that we have been able to con-
struct with the prescribed invariance up to fourth order
for renormalisability. This means that under radiative cor-
rections the potential will remain of the same form, only
changing the values of the seven coupling parameters that
appear there. Such will not be the case for the poten-
tial in DSM, which under radiative corrections can acquire
new terms not yet included. Moreover, this unique framon
potential of the present scheme has some very attractive
properties. It has a part involving the “weak” framons only,
which is of the same form as that for the standard elec-
troweak theory, and another part involving the “strong”
framons only, which is close to the potential of DSM con-
structed for its favourable phenomenological properties.
What is most interesting, however, are the additional ν1
and ν2 terms linking the “weak” and “strong” sectors,
which are automatically admitted and required by the in-
variance. These not only distort the “strong” sector vac-
uum in such a way as to make it partake even more of the
phenomenologically favourable properties of the DSM po-
tential, e.g. to make its vacuum degenerate and amenable
to rotation, but also they couple automatically the “weak”
and “strong” sectors in such a way that this rotation origi-
nating in the “strong” sector is carried over into the “weak”
sector, where the quarks and leptons of primary interest
occur.
(c) In DSM, there being no requirement of s̃u(3) in-

variance, the Yukawa term was constructed just by sum-
ming over the free ã indices so as to guarantee at least
permutation symmetry, which we have always regarded as
a somewhat weak assumption. Nevertheless, it was this as-
sumption that led to the factorisable fermion mass matrix,
a rather important requirement for the scheme to work. In
the present scheme, one has instead the s̃u(3) invariance,

which is inherent already in the framon idea, and this al-
lowed one to construct seemingly unique Yukawa terms for
both the weak and strong sectors leading automatically to
factorisable fermion matrices. In constructing the Yukawa
term for the strong sector one had to rely on the vector
α0 coming from the weak sector to maintain s̃u(3) invari-
ance, while for the weak sector one had to rely on the vector
α(±) coming from the electromagnetic sector to maintain
s̃u(2) invariance. Interestingly, it is exactly this intricate
interplay between the various symmetries imposed by the
framon idea on the Yukawa terms and on the framon po-
tential in (b) that has allowed one not only to keep nearly
all of the DSMs phenomenologically favourable features
but also, it seems, to avoid most of its pitfalls, as will be
seen in the following examples.
(d) In DSM, as explained in (a), the electroweak sec-

tor was not properly incorporated, and no consideration
had yet been given to the confinement picture of sym-
metry breaking as set out in our assumption (B) in the
introduction. In the present language when assumption
(B) is adopted, the states we called quarks and leptons in
DSM would now appear as bound states of the fundamen-
tal fermion fields with framons confined via colour su(3).
In other words, they would be hadrons, the not quasi-
elementary states in what we now call the standard model
scenario. Of course, one needs not perhaps insist on the
confinement picture, but this would seem now unnatural
in view of its success in other circumstances. Instead, in
the present scheme, quarks and leptons, appearing now as
bound states via the supposedly much deeper su(2) con-
finement, would appear as quasi-elementary under present
experimental conditions.
(e) There was a mystery in the DSM, which was not re-

solved within its own context. In writing down the fermion
mass matrix in a form analogous to (113) above, the vec-
tor, say α′, which appeared there, originated in the strong
sector and could depend in principle, as a function of the
scale µ, on the fermion species, i.e. U , D, charged lep-
tons, or neutrinos. However, to our surprise, in fitting the
data [8] with these α′ as parameters, it turned out that
the best fits for the first three species were accurately iden-
tical. So much so, indeed, that for all subsequent fits, we
have just taken the same α′ for all species. This gives the
picture, to us very appealing, of all fermions lying on the
same rotation trajectory as depicted in Fig. 3 of [7] or Fig. 7
of [4], and as utilised implicitly in coming to the conclu-
sions (i)–(iv) above. Why the trajectories for all α′ should
be the same, however, was not explained in DSM. Here, in
contrast, as asserted in entry (b), the vector α, which ap-
pears in the quark and leptonmass matrix (113), originates
in the weak framon and does not depend on the fermion
species. The rotation mechanism, moreover, comes from
the strong sector and gets transmitted to the vectorα only
through the linkage term ν2 in the framon potential, which
contains no species dependence. In other words, that all
fermion species have the same rotation trajectory, which
was an empirical observation deduced from fitting experi-
mental data in DSM, seems now to be an automatic predic-
tion in the present framework. An analogous observation
applies to the normalisation of α, which is here a matter of
definition, whereas for its parallelα′ in DSM, the normali-
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sation changed as the scale changed and caused there some
problems.
(f) One unhappy feature ofDSMwas the existence in the

Higgs spectrum of two zeromodes [8]. These arose in the old
model as a direct consequence of the 2-dimensional degen-
eracy of the vacuum just mentioned, i.e. in addition to the
degeneracy connected to the local gauge invariance of the
system, and cannot thus be eaten up by the vector bosons.
TheseHiggs zeromodeswere a headache, for they carry gen-
eration indices but no (up–down) flavour index, i.e. charge,
which meant that they could give rise to FCNC effects un-
suppressed by a mass. Although in the cases we have ex-
amined [19] disaster was avoided by some special features
in their couplings, they remained a major concern for the
model. In the present framework, however, there are no cor-
responding zero modes. Recall the Higgs mass matrix given
explicitly above in (99) for the 2-G model. There is no zero
mode there, although, given the analogous 1-dimensional
degeneracy of the vacuum in the 2-G model, one might ex-
pect one zero mode by analogy. The reason for this differ-
ence between the two schemes is a rather subtle one. In
both, the degeneracy of the vacuum arises, of course, from
a symmetry; not the local gauge symmetry, but in DSM
fromthepermutation symmetrymentioned in (b) and in the
present framework from the global s̃u(3) symmetry. The dif-
ference, however, lies in the fact that the symmetry index
in the present framework is carried by the framon only in
the global factorα, which is x-independent, as seen in (11),
while in DSM it is carried by the x-dependent field itself.
Now a field can fluctuate and give rise to Higgs bosons, but
not an x-independent global factor like α; hence the differ-
ence. The absence of these zero modes in the present model
has thus removed a big worry as regards possible violations
of experimental FCNC bounds.
(g) In DSM, the rotating vector called α′ in (e) above

which gives the fermion mass hierarchy and mixing pat-
terns is actually the vector r = (x, y, z) introduced before
in (39), and this rotates from the high scale (µ =∞) fixed
point at r = (1, 0, 0) to the low scale (µ = 0) fixed point
at r = 1√

3
(1, 1, 1). To fit the experimental data, this r has

to go pretty much all the way between these two fixed
points within the physical range from µ =mt, the top-
quark mass, to µ =mν , the neutrino masses, i.e. the 14
orders of magnitude or so in energy accessed by present ex-
periment. Embarrassingly, however, the gauge and Higgs
boson masses in the model depend on the values of r,
with some proportionality to e.g.

√

y2+ z2, and they will
thus vary greatly with scale when r varies over the above
range. This fact puts serious constraints on the DSM’s phe-
nomenological applicability. In the present scheme, there
is no parallel difficulty. Although the vector α, which ap-
pears in the quark and lepton mass matrices does vary over
a similar range as r in DSM, which ought to be sufficient
for fitting the same experimental data on fermionmass and
mixing patterns, the quantities x, y, z on which the boson
masses depend never change much from one another, with
differences ∆ always less than R, which supposedly has
a small value.
Besides, there are bonuses such as an explanation for

baryon–lepton number conservation and the possibility of

understanding CP -violation in mixing, which was beyond
the older model. Thus, so long as the projection made be-
fore of the present scheme’s viability in phenomenological
application is confirmed, one would end up with a much
stronger framework both from the theoretical and from the
practical standpoint.

9 Concluding remarks

Let us begin by summing up what seems to have been
gained.

(I) One has assigned to scalar fields a geometrical signif-
icance that they previously lacked.

(II) One has gained thereby a theoretical criterion on
what scalar fields are to be introduced into a gauge
theory and needs no longer rely entirely on the dic-
tates of experiment.

(III) One has answered, or at least bypassed, the ques-
tion why, of the two non-abelian symmetries in the
standard model, one (su(2)) is broken, but the other
(su(3)) is confined. One now asserts instead that all
local gauge symmetries remain exact, and both non-
abelian gauge symmetries are confining. It is only
the global symmetries s̃u(2) and s̃u(3) arising by
virtue of the framon idea in (I), which are broken.

(IV) One has gained a solution to the old puzzle of baryon
number conservation (in its modern form of B−L
conservation). This turns out here to be the same as
conservation of the ũ(1) charge, again a consequence
of the framon idea (I), which quarks and leptons,
as bound states of su(2) confinement, have acquired
from framons as one of their constituents.

(V) One has recovered the electroweak theory in its stan-
dard form.

(VI) One has acquired for quarks and leptons, again from
framons through su(2) confinement, an index refer-
ring to the global symmetry s̃u(3), which can play
the role of generations. So fermion generation is
“dual” to colour as baryon–lepton number is to elec-
tric charge, or as up–down flavour is to the confining
su(2).

(VII) One has reproduced, with a structurally very differ-
ent but theoretically much more consistent scheme,
the essential features of an earlier phenomenologi-
cal model that was successful in explaining the mass
and mixing patterns of leptons and quarks observed
in experiments.

A key note in the theoretical construction leading to
the above enumerated gains seems to be that of economy.
Not only has no local gauge symmetry larger than that
of the standard model been introduced and no extension
of the standard model framework been made along pop-
ular lines like supersymmetry, higher space-time dimen-
sions, or extended structures like strings and branes, but
even within the present scheme itself, any ambiguities that
arise (such as embeddings, representations etc.) have been
consistently settled by insistence on minimality, and in al-
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most every case, nature seems to have agreed. It is not
that the present scheme cannot admit of extensions by su-
persymmetry, high space-time dimensions or string-like or
brane-like structures, for we can see no contradiction in
principle of the present scheme with all those; but for an-
swering the questions posed at the beginning, there seems
no need at present for such extensions. When approached
as suggested here, the answers sought appear to be there
already within the standard model framework.
Comparing now the list above to the questions posed

at the beginning in the introduction, one sees that there
is now an answer offered for most. There is even a bonus,
namely a solution offered for the ancient puzzle why baryon
(or baryon–lepton) number is conserved, which was not
conceived as one of the original aims. But there remains
one question unanswered and one to which the answer
is incomplete. The latter is why we have the distinction
seen in nature between the two non-abelian symmetries
in the standard model. Although in the confining picture,
as in (III) above, one has reduced the question by tak-
ing both su(2) and su(3) as confining, it still begs the
question why one can assume, as one needs to do and as
’t Hooft and Banks and Rabinovici did, that su(2) confine-
ment is so much deeper than su(3) colour confinement as
to be completely undetected at present. The other is why,
as assumed here, and also in the conventional formulation
of the standard model, it is that su(2) doublets are left-
handed but su(2) singlets right-handed. In place of answers
to these questions, we can offer at present only some, per-
haps slightly wild, speculations, which we are not as yet in
a position to substantiate.
When the idea that fermion generations may be dual

to colour was first conceived [5], it was actually envisaged
that by duality onemeant the non-abelian generalisation of
the electromagnetic or Hodge star duality, as proposed, for
example, in [21], although at that stage, nothing concrete
was made out of the proposal. As the idea is developed
in the present paper, however, the “duality” between the
local gauge symmetries and their global duals is really just
a change of frames, sharing little of the intricacies of the
Hodge star. For instance, the massive vector bosons ˜Bµ
in the electroweak theory as treated here and in [2, 3] are
coupled with the same strength g2 as the gauge boson Bµ.
In contrast, if Bµ and ˜Bµ were really dual in the (gener-
alised) Hodge-star sense, we would expect the two coupling
strengths to be related by a Dirac quantisation relation,
say

g2g̃2 = 4π , (150)

with g2 being the coupling strength for Bµ and g̃2 that for
˜Bµ. Besides, if the (generalised) Hodge dual to su(2) exists,
as [21] claims, then there is an old result of ’t Hooft which
says that the dual symmetry will be broken [2], meaning
presumably that it will be associated with some massive
vector bosons that will be coupled with strength g̃2 and
not g2. Can we then be sure that the actual massive vec-
tor bosons W–Z we presently see in experiment are the
˜Bµ considered above, or are they the (generalised) Hodge
duals here considered? Suppose for the moment that it is

the latter we see, with the experimentally measured coup-
ling strength of α2 = g̃

2
2/4π ∼ 0.034, then by the Dirac

quantisation condition above, the coupling strength g2 of
the gauge boson Bµ would be very large, of the order 20,
much larger than the coupling strength of the colour gluon,
g3 ∼ 1.2. One could perhaps then understand why su(2)
confinement is so much deeper than su(3) colour confine-
ment. Besides, if g2 is really that large, then the massive
vector bosons ˜Bµ considered before whose mass is propor-
tional to g2 will be extremely heavy, probablymuch heavier
than the (generalised) Hodge duals that we identify as the
W s and Z. If so we would have answered the question
of why they are not seen, and hence the whole question
that was posed. But at the moment, we have no clear idea
whether this can indeed be the case.
Amusingly, the speculation aired in the preceding para-

graph offers also a possible answer to another question
posed before, concerning the apparent lack of influence on
physics at our present “low” energies from higher vector
boson states that are expected as radial and orbital excita-
tions of theW , Z–γ complex when the confinement picture
of the electroweak theory is taken to be physical. This lack
is intuitively understandable, and it is confirmed by the an-
alysis in [12], if the excited states are much heavier than the
ground states W , Z–γ, but the question remains why the
statesW and Z–γ should be so much lighter than their ex-
citations, which seems in some conflict with our experience
in the parallel scenario of colour su(3) confinement. How-
ever, if our assumption above makes sense, then the states
W and Z–γ are not just the lowest in a tower of radial
and orbital excitations as pictured before, but a completely
different object, namely the dual to the gauge bosons via
a non-abelian generalisation to Hodge duality. This latter
is a very complicated state, in a sense containing already
a complex mixture of radially and orbitally excited com-
ponents, and one that cannot easily admit, presumably,
any further simple excitations. What corresponds instead
to the ground states in the familiar tower of radial and or-
bital excitations are not then the W and Z–γ states but
the states called ˜Bµ in the preceding paragraph, which, as
the argument goes, are already very much higher in mass
than the W and Z–γ bosons we experimentally observe.
And their excitations would be even higher. There is then
little wonder that they have no observable influence on the
“low” energy physics accessible to us at present.
Our speculative answer to the other question of why

su(2) doublets are left-handed but singlets right-handed is
perhaps little more than just wishful thinking. The point is
that in the confinement picture, doublets have to be con-
fined, and the actual left-handed quarks and leptons we
see are actually compound states made up of fundamen-
tal fermions and framons, while the right-handed ones are
still just fundamental fermions. Besides, it is only the left-
handed quarks and lepton that interact with the vector
bosons W± and γ–Z. Now, suppose for some reason that
the framons should carry with them the projection opera-
tor 12 (1+γ5); then in all the terms in the action we wrote
down, only left-handed flavour doublets and right-handed
flavour singlets would occur, and all the vector bosons,
being bound states of φ†φ, will be left-handed. But we
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can see no reason at present why framons as frame vectors
should carry with them the said projection operator.
However, even with these two theoretical questions still

unanswered, one has made, it seems, quite some progress
towards a protogenic model. But what about phenomenol-
ogy? Although the present scheme, as shown, has repro-
duced all the essential features of our earlier phenomeno-
logical (DSM) model, and has therefore, as judged by pre-
vious experience, a good chance of reproducing the earlier
model’s phenomenological successes, this has to be con-
firmed by calculation, which has started but has not yet
given definite results. Optimistically, there might even be
a chance of improving on the earlier results, given that
there may now be a possibility of getting CP -violation in
the mixing matrices, which was not possible for the earlier
model.
Then there are a host of phenomenological questions to

be examined on whether the present scheme may give rise
to new phenomena violating present experimental bounds.
This will be a lengthy process, which will take time to sort
out. One of the foremost questions to examine, we think,
would be whether the proposed existence of the “strong”
framons would disturb the apparent agreement of standard
QCD with experiment in, for example, the running with
energy of αs, the strong coupling constant. A preliminary
investigation says no, given that the contribution of the
scalar framons to the β-function is very small, only 1/8 of
that from fermions [22, 23], but this has yet to be system-
atically confirmed.
Again, optimistically, one may ask whether, apart from

explaining known effects and surviving existing bounds,
the present scheme gives some new characteristic predic-
tions testable by foreseeable experiments. As far as we
can see at present, any quantitative prediction will have
to await the conclusion of the calculations and investiga-
tions projected in the last two paragraphs. One outstand-
ing qualitative prediction, however, that might be testable
already when the LHC comes into operation, is the exis-
tence of internal structures for leptons and quarks, which
up to now have appeared to be point-like. This predic-
tion, though present already in the confinement picture
for the standard electroweak theory as an alternative in-
terpretation, has now become an apparent imperative in
the present scheme for, as we recall, it is through su(2)
confinement that quarks and leptons acquire from their
framon constituents both their generation index and their
baryon–lepton number. In principle, the internal struc-
tures of quarks and leptons can be detected by deep inelas-
tic scattering experiments as the structure of the proton
was detected, only at a much deeper level. Unfortunately,
our meagre understanding of su(2) confinement at present
is insufficient to predict at what depth the internal struc-
ture of quarks and leptons are to be detected. But for all we
know, it may be just around the corner, and it would seem
to pay the experimenter to look out for it as soon as LHC
starts to run.
The prediction of internal structure for quarks and

leptons, though physically highly significant, is insuffi-
ciently special or specific to distinguish the present scheme
from other composite models. However, the same dy-

namics that led here to the said internal structure can
manifest itself also in the existence of excited quark and
lepton states, as already mentioned, which may be ex-
perimentally produced if the energy is high enough. And
the spectrum of these will depend on the details of the
scheme. Indeed, if one takes the confinement picture of
the electroweak theory as actually physical, then there
would be a host of other new states formed by su(2)
confinement from any singlet combinations of the fun-
damental framon, gauge and fermion fields. This will
open up a whole new field of spectroscopy to future in-
vestigation at sufficiently high energy, which is poten-
tially every bit as rich as, if not even richer than, hadron
spectroscopy.
Of most exotic interest in this scenario would perhaps

be those states formed from a pair of the fundamental
fermion fields ψ(2, 1) or ψ(2, 3), which (though bosonic)
are analogous to baryons in hadron spectroscopy. They can
be grouped into the following three types: ψ(2, 1)ψ(2, 1),
ψ(2, 3)ψ(2, 3), and ψ(2, 1)ψ(2, 3), which, for reasons to
be made clear, we shall label as dileptons, diquarks and
lepto-quarks, respectively. Generically, of course, dilepton,
diquark, and lepto-quark states occur in any scheme in
which the confinement picture for su(2) is taken as phys-
ical, as already considered in for example [12]. But in
the present framework, there is a new twist, because of
the particular way that the baryon–lepton number and
the generation index are introduced. We recall that the
baryon–lepton number as well as the generation index in
the present scheme are attached not to the fundamen-
tal fermion fields but to the framon fields, and they only
got transmitted to the bound quark and lepton states
via su(2) confinement of the fundamental fermion fields
with the framons. We have thus the unusual situation
that what were called dileptons, diquarks and lepto-quarks
above, comprising as they did only fundamental fermion
states, do not actually carry a baryon or lepton num-
ber, nor for that matter a generation index. Nevertheless,
when they decay, as they presumably will, since they are
expected to have quite high masses, they would do so
most probably, in analogy to what hadrons do, by cre-
ating a framon–antiframon pair which, by combining re-
spectively with the two constituent fundamental fermion
fields, will give back the appropriate baryon–lepton num-
bers and generation indices to the quarks and leptons in
the decay products. Hence, the first type will decay into
a pair of leptons, the second into a pair of quarks, and
the third into a lepton and a quark, as the labels of re-
spectively dileptons, diquarks and lepto-quarks suggest.
However, the spectrum of these states will be different in
the present framework from that obtained in models of
su(2) confinement [12] where the baryon–lepton number
and generation index are attached instead to the funda-
mental fermion fields. Thus, given sufficiently high energy
for this new spectroscopy to be explored, there should, we
think, be no great difficulty in distinguishing the present
framework from the others. Clearly, a lot of details of the
phenomenology remain yet to be worked out, the treat-
ment of which would take us way beyond the scope of the
present paper, and this has to be left to be supplied, we
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hope, elsewhere later. But the brief discussion above may
already serve to indicate the richness of this possible new
field of particle spectroscopy, which can become a pro-
lific hunting ground for future experiments, if not yet al-
ready at LHC, then one day when high enough energies are
available.
Lastly, we note that of the physical ingredients mak-

ing up the present framework, the most distinctive ones are
perhaps the strong framon fields φãr̃a , at least when taken
as elementary as they are in this paper. It would be nice,
therefore, if one could device a phenomenological handle
for their detection. These are colour triplets and can, thus,
like quarks, manifest themselves in two ways, either con-
fined into freely propagating colour singlet hadron states,
or else appearing as jets in hard scattering; but the detec-
tion of either will not be altogether easy. For example, by
binding together a framon–antiframon pair, we would ob-
tain in the s-wave the scalar states studied in the second
half of Sect. 5, or else in the p-wave some analogous vector
states. But these are hadrons with presumably rather high
masses, and hence broad widths, and they will not be easy
either to detect or to distinguish at first sight from hadrons
of the common qq̄-type. Nevertheless, we do know a fair
amount of these states, as the analysis of Sect. 5 shows, and
this can be further extended, so that with luck and hard
work, sufficient distinctive features may be identified for
their eventual detection. The same remark applies to the
problem of detecting the jets in hard scattering originat-
ing from framons and distinguishing them from the quark
jets also produced. Clearly, there is scope for much future
phenomenology in this direction.
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